study.aiml附件内容
在利用Aiml作为随机聊天或者专业问题应答的时候,发现其对中文的支持极差。必须输入确定的问题,才能得到一些相对准确的答复。
这里重点探索两个问题:
解决“*问题*” 这种模糊匹配问题,同时可以匹配到“问题”、“什么问题”、“问题是什么”等类似模糊输入,并对其进行应答。
解决无答案时的自学习问题。
最终展现的是:有答案时,根据“问题”进行应答;没有答案时,可以根据训练,使其学会准确的应答。这样可以减少AIML库大量的不确定性问题编著。
在没有标准应答的时候,根据情境自动进行聊天(休闲模式);当特定问题进来时,进行标准应答(专家模式)。
std-startup.xml
在利用Aiml作为随机聊天或者专业问题应答的时候,发现其对中文的支持极差。必须输入确定的问题,才能得到一些相对准确的答复。
这里重点探索两个问题:
解决“*问题*” 这种模糊匹配问题,同时可以匹配到“问题”、“什么问题”、“问题是什么”等类似模糊输入,并对其进行应答。
解决无答案时的自学习问题。
最终展现的是:有答案时,根据“问题”进行应答;没有答案时,可以根据训练,使其学会准确的应答。这样可以减少AIML库大量的不确定性问题编著。
在没有标准应答的时候,根据情境自动进行聊天(休闲模式);当特定问题进来时,进行标准应答(专家模式)。
myaiml.py附件内容
在利用Aiml作为随机聊天或者专业问题应答的时候,发现其对中文的支持极差。必须输入确定的问题,才能得到一些相对准确的答复。
这里重点探索两个问题:
解决“*问题*” 这种模糊匹配问题,同时可以匹配到“问题”、“什么问题”、“问题是什么”等类似模糊输入,并对其进行应答。
解决无答案时的自学习问题。
最终展现的是:有答案时,根据“问题”进行应答;没有答案时,可以根据训练,使其学会准确的应答。这样可以减少AIML库大量的不确定性问题编著。
在没有标准应答的时候,根据情境自动进行聊天(休闲模式);当特定问题进来时,进行标准应答(专家模式)。
learn.py附件内容
在利用Aiml作为随机聊天或者专业问题应答的时候,发现其对中文的支持极差。必须输入确定的问题,才能得到一些相对准确的答复。
这里重点探索两个问题:
解决“*问题*” 这种模糊匹配问题,同时可以匹配到“问题”、“什么问题”、“问题是什么”等类似模糊输入,并对其进行应答。
解决无答案时的自学习问题。
最终展现的是:有答案时,根据“问题”进行应答;没有答案时,可以根据训练,使其学会准确的应答。这样可以减少AIML库大量的不确定性问题编著。
在没有标准应答的时候,根据情境自动进行聊天(休闲模式);当特定问题进来时,进行标准应答(专家模式)。
autostudy.aiml
在利用Aiml作为随机聊天或者专业问题应答的时候,发现其对中文的支持极差。必须输入确定的问题,才能得到一些相对准确的答复。
这里重点探索两个问题:
解决“*问题*” 这种模糊匹配问题,同时可以匹配到“问题”、“什么问题”、“问题是什么”等类似模糊输入,并对其进行应答。
解决无答案时的自学习问题。
最终展现的是:有答案时,根据“问题”进行应答;没有答案时,可以根据训练,使其学会准确的应答。这样可以减少AIML库大量的不确定性问题编著。
在没有标准应答的时候,根据情境自动进行聊天(休闲模式);当特定问题进来时,进行标准应答(专家模式)。
解决aiml中文支持和模糊匹配问题探索附件
在利用Aiml作为随机聊天或者专业问题应答的时候,发现其对中文的支持极差。必须输入确定的问题,才能得到一些相对准确的答复。
这里重点探索两个问题:
解决“*问题*” 这种模糊匹配问题,同时可以匹配到“问题”、“什么问题”、“问题是什么”等类似模糊输入,并对其进行应答。
解决无答案时的自学习问题。
最终展现的是:有答案时,根据“问题”进行应答;没有答案时,可以根据训练,使其学会准确的应答。这样可以减少AIML库大量的不确定性问题编著。
在没有标准应答的时候,根据情境自动进行聊天(休闲模式);当特定问题进来时,进行标准应答(专家模式)。