自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 资源 (6)
  • 收藏
  • 关注

原创 解决aiml中文支持和模糊匹配问题探索

主程序import aimlimport oskernel = aiml.Kernel()kernel.bootstrap(learnFiles = "std-startup.xml", commands = "load aiml b")while True: message = input("Enter your message to the bot: ") if message == "退下": exit() elif message == "记忆":

2020-12-16 15:38:09 541 3

转载 Aiml智能标记语言规范(20201216)

Aiml智能标记语言规范(20201216)xml每一个型如叫做一个元素,每个元素都是闭合的,也就是说要只要有开头就必定有相对应与之闭合;topic=”电影”称为改元素的属性,一个元素可以有多个属性没有限制。元素和元素之间可以嵌套,但必须闭合。一个最简单的aiml文件如下:<?xml version="1.0" encoding="GB2312"?><aiml><category> <pattern>你好</pattern>

2020-12-16 15:27:22 433

study.aiml附件内容

在利用Aiml作为随机聊天或者专业问题应答的时候,发现其对中文的支持极差。必须输入确定的问题,才能得到一些相对准确的答复。 这里重点探索两个问题: 解决“*问题*” 这种模糊匹配问题,同时可以匹配到“问题”、“什么问题”、“问题是什么”等类似模糊输入,并对其进行应答。 解决无答案时的自学习问题。 最终展现的是:有答案时,根据“问题”进行应答;没有答案时,可以根据训练,使其学会准确的应答。这样可以减少AIML库大量的不确定性问题编著。 在没有标准应答的时候,根据情境自动进行聊天(休闲模式);当特定问题进来时,进行标准应答(专家模式)。

2020-12-16

std-startup.xml

在利用Aiml作为随机聊天或者专业问题应答的时候,发现其对中文的支持极差。必须输入确定的问题,才能得到一些相对准确的答复。 这里重点探索两个问题: 解决“*问题*” 这种模糊匹配问题,同时可以匹配到“问题”、“什么问题”、“问题是什么”等类似模糊输入,并对其进行应答。 解决无答案时的自学习问题。 最终展现的是:有答案时,根据“问题”进行应答;没有答案时,可以根据训练,使其学会准确的应答。这样可以减少AIML库大量的不确定性问题编著。 在没有标准应答的时候,根据情境自动进行聊天(休闲模式);当特定问题进来时,进行标准应答(专家模式)。

2020-12-16

myaiml.py附件内容

在利用Aiml作为随机聊天或者专业问题应答的时候,发现其对中文的支持极差。必须输入确定的问题,才能得到一些相对准确的答复。 这里重点探索两个问题: 解决“*问题*” 这种模糊匹配问题,同时可以匹配到“问题”、“什么问题”、“问题是什么”等类似模糊输入,并对其进行应答。 解决无答案时的自学习问题。 最终展现的是:有答案时,根据“问题”进行应答;没有答案时,可以根据训练,使其学会准确的应答。这样可以减少AIML库大量的不确定性问题编著。 在没有标准应答的时候,根据情境自动进行聊天(休闲模式);当特定问题进来时,进行标准应答(专家模式)。

2020-12-16

learn.py附件内容

在利用Aiml作为随机聊天或者专业问题应答的时候,发现其对中文的支持极差。必须输入确定的问题,才能得到一些相对准确的答复。 这里重点探索两个问题: 解决“*问题*” 这种模糊匹配问题,同时可以匹配到“问题”、“什么问题”、“问题是什么”等类似模糊输入,并对其进行应答。 解决无答案时的自学习问题。 最终展现的是:有答案时,根据“问题”进行应答;没有答案时,可以根据训练,使其学会准确的应答。这样可以减少AIML库大量的不确定性问题编著。 在没有标准应答的时候,根据情境自动进行聊天(休闲模式);当特定问题进来时,进行标准应答(专家模式)。

2020-12-16

autostudy.aiml

在利用Aiml作为随机聊天或者专业问题应答的时候,发现其对中文的支持极差。必须输入确定的问题,才能得到一些相对准确的答复。 这里重点探索两个问题: 解决“*问题*” 这种模糊匹配问题,同时可以匹配到“问题”、“什么问题”、“问题是什么”等类似模糊输入,并对其进行应答。 解决无答案时的自学习问题。 最终展现的是:有答案时,根据“问题”进行应答;没有答案时,可以根据训练,使其学会准确的应答。这样可以减少AIML库大量的不确定性问题编著。 在没有标准应答的时候,根据情境自动进行聊天(休闲模式);当特定问题进来时,进行标准应答(专家模式)。

2020-12-16

解决aiml中文支持和模糊匹配问题探索附件

在利用Aiml作为随机聊天或者专业问题应答的时候,发现其对中文的支持极差。必须输入确定的问题,才能得到一些相对准确的答复。 这里重点探索两个问题: 解决“*问题*” 这种模糊匹配问题,同时可以匹配到“问题”、“什么问题”、“问题是什么”等类似模糊输入,并对其进行应答。 解决无答案时的自学习问题。 最终展现的是:有答案时,根据“问题”进行应答;没有答案时,可以根据训练,使其学会准确的应答。这样可以减少AIML库大量的不确定性问题编著。 在没有标准应答的时候,根据情境自动进行聊天(休闲模式);当特定问题进来时,进行标准应答(专家模式)。

2020-12-16

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除