求N个数的最大公约数和最小公倍数,及其逆问题

一:题目分析

基本要求:求N个数的最大公约数和最小公倍数。用C或C++或java或python语言实现程序解决问题。

          1.程序风格良好(使用自定义注释模板)

          2.提供友好的输入输出,并进行输入数据的正确性验证。

提高要求:已知正整数a0,a1,b0,b1,设某未知正整数x满足:

1、  x和a0的最大公约数是a1;

2、  x和b0的最小公倍数是b1。

求得X的个数。

样例输入

2

41 1 96 288

95 1 37 1776

样例输出

6

2

二:题目分析与算法实现

  1 用辗转相除法函数嵌套调用实现求俩数的最大公约数和最小公倍数,代码如下:

int divisor (int a,int b)    //自定义函数求两数的最大公约数

{

  int  temp;          //定义整型变量

  if(a<b)             //通过比较求出两个数中的最大值和最小值

    { temp=a;a=b;b=temp;} //设置中间变量进行两数交换

   while(b!=0)           //通过循环求两数的余数,直到余数为0

    {

      temp=a%b;

      a=b;              //变量数值交换

      b=temp;

    }

  return (a);            //返回最大公约数到调用函数处

}

int multiple (int a,int b)  //自定义函数求两数的最小公倍数

{

  int divisor (int a,int b); //自定义函数返回值类型

  int temp;

  temp=divisor(a,b);  //再次调用自定义函数,求出最大公约数

  return  (a*b/temp); //返回最小公倍数到主调函数处进行输出

}

2 对提高要求

void main()

{

       int n,i,j,y,x,k;

       scanf("%d",&n);

       int a[n][4];              //建立二维数组

       for(j=0;j<n;j++)         //输入多行数据

         for(i=0;i<4;i++)       //输入一行数据

           scanf("%d",&a[j][i]);

           for(k=0;k<n;k++){     

                 y=0;

           x=a[k][1];

              for(x=a[k][1];x<=a[k][3];x++){

                     if(divisor(a[k][0],x)==a[k][1]&&multiple(x,a[k][2])==a[k][3])   //判断是否符合要求

                     y++;

              }

              printf("%d\n",y);

    }  

}

: 算法实现

1 源代码如下:

#include "stdio.h"   

int divisor (int a,int b)    //自定义函数求两数的最大公约数

{

  int  temp;          //定义整型变量

  if(a<b)             //通过比较求出两个数中的最大值和最小值

    { temp=a;a=b;b=temp;} //设置中间变量进行两数交换

   while(b!=0)           //通过循环求两数的余数,直到余数为0

    {

      temp=a%b;

      a=b;              //变量数值交换

      b=temp;

    }

  return (a);            //返回最大公约数到调用函数处

}

int multiple (int a,int b)  //自定义函数求两数的最小公倍数

{

  int divisor (int a,int b); //自定义函数返回值类型

  int temp;

  temp=divisor(a,b);  //再次调用自定义函数,求出最大公约数

  return  (a*b/temp); //返回最小公倍数到主调函数处进行输出

}

 

void main()

{

    int N,i;

    printf("请输入N的个数:");

    scanf("%d",&N);

    printf("请输入数字:");

       int a[N];

       for(i=0;i<N;i++)

       scanf("%d",&a[i]);

 

       int x,y;

       x=a[0];

       for(i=1;i<N;i++)

       {

              y=a[i];

              x=divisor(x,y);

       }

    printf("这N个数的最大公约数为:%d\n",x);

       x=a[0];

       for(i=1;i<N;i++)

       {

              y=a[i];

              x=multiple(x,y);

       }

    printf("这N个数的最大公约数为:%d\n",x);

  }

2 源代码如下

#include<stdio.h>

int divisor (int a,int b)    //求最大公约数

{

  int  temp;         

  if(a<b)            

    { temp=a;a=b;b=temp;}

   while(b!=0)          

    {

      temp=a%b;

      a=b;            

      b=temp;

    }

  return (a);          

}

int multiple (int a,int b)    //求最小公倍数

{

  int temp;

  temp=divisor(a,b); 

  return  (a*b/temp);

}

 

void main()

{

       int n,i,j,y,x,k;

       scanf("%d",&n);

       int a[n][4];              //建立二维数组

       for(j=0;j<n;j++)         //输入多行数据

         for(i=0;i<4;i++)       //输入一行数据

           scanf("%d",&a[j][i]);

           for(k=0;k<n;k++){     

                 y=0;

           x=a[k][1];

              for(x=a[k][1];x<=a[k][3];x++){

                     if(divisor(a[k][0],x)==a[k][1]&&multiple(x,a[k][2])==a[k][3])   //判断是否符合要求

                     y++;

              }

              printf("%d\n",y);

    }  

}

四:归纳总结

  本次设计采用辗转相除法函数的嵌套使用,算法构造比较简单,在主函数中使用嵌套调用即可完成基本要求。

  对于提高要求,使用二维数组输入多行数据,在循环中判断X是否符合要求即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值