23、利用 PySpark 进行决策树分类器的机器学习基础

利用 PySpark 进行决策树分类器的机器学习基础

1. PySpark 中的机器学习包

PySpark 的机器学习功能集中在 ml 包中,该包包含多个模块,对核心机器学习功能进行了分类:
- pyspark.ml.feature :用于特征转换和创建。
- pyspark.ml.classification :判断数据点所属类别的算法。
- pyspark.ml.tuning :改进机器学习模型的算法。
- pyspark.ml.evaluation :评估机器学习模型的算法。
- pyspark.ml.util :保存和加载机器学习模型的方法。

与之前使用的 RDD 不同,PySpark 的机器学习功能要求数据以 DataFrame 对象的形式存在。RDD 是 Spark 核心的抽象并行数据结构,而 DataFrame 是构建在 RDD 之上的一层,提供了行和列的概念,类似于 SQL 数据库的表格存储和检索方式。

2. 将数据导入 DataFrame

在机器学习过程中,第一步是准备好用于分析的数据,可能包括变量格式转换和数据清理等预处理操作。在这个例子中,数据已经是干净的。

对于 RDD,Spark 提供了 .textFile 方法来读取和处理文本数据。对于 DataFrame,也有多种便捷的选择:
- 如果数据已经在 RDD 中,可以直接在 RDD 上调用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值