线性空间1(矩阵论)

定义线性空间

加法:两个元素相加

数乘:一个数乘一个元素

运算封闭:若一个元素 A 在集合 V 里面,且元素 A 进行运算得到另一个元素 B 也在 V 里面,则称,这个运算对于集合 V 封闭

线性空间:若加法和数乘都对 V 封闭,若 V 中的元素都符合 8 条运算率,且用于数乘的数都属于数域 P,则称集合 V 为数域 P 上的线性空间

例:数域 P 上次数等于 n 的一元多项式,不是线性空间

(若两个多项式相加,最高项次数抵消,则结果不是 n 次多项式。也即对加法不封闭)

非齐次的解空间不是线性空间

(A1+A1)x = 2b

(解空间也称,系数矩阵 A 的零空间 或 核空间)

令矩阵向量积 Ax = y,所有 y 的集合称为矩阵 A 的列空间或值域,或 A 的像

基、坐标、维数

:在线性空间 V 中,若存在一组向量组 A,既线性无关,又能线性表示 V 中的任意向量,则称 A 是 V 的一组基

坐标:用基向量去表示 V 中的一个向量 A 时,所用到的一组系数,称之为 A 在这组基上的坐标

维数:基向量的个数

一些特殊符号的说明

n 次多项式
n 次多项式
在这里插入图片描述
n 维向量
在这里插入图片描述
m 行 n 列的矩阵

求线性空间的基

基的扩张定理:V 中任意一个线性无关的向量组,均可以被扩充为一组基

同构:V 中任意向量均能基唯一表示
(同构现象表明,V 中的元素与向量一 一对应,这使得在研究 V 中元素的线性关系,可以转为研究对应向量的线性关系

基变换与坐标变换

基变换:若 A、B 的列向量是 V 的两个基,则存在可逆矩阵 P,使得 B = AP
(P 称为过渡矩阵)
坐标变换:若元素 a 在基 A、B 下的坐标分别为 x、y,P 为过渡矩阵,则 y = inv§ x

例题

在这里插入图片描述
思路:(1)两边均可写成 “基 * 坐标”的形式,合并之后,也就是 AP1 = BP2,可以验证 P1、P2均为逆矩阵。由于 A 是一组基,所以乘一个逆矩阵,得到的还是一组基,也就证明了 B 是基
(2)注意是由 B 到 A ,也就是用 A 去表示 B ,也就是 A = BP
(3)将第二问结论带入即可

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值