hdu5009 Paint Pearls DP

       题意大概是给一个序列,每个数表示一种颜色,每次可以取走连续的一段,花费是取走的这段中颜色数量的平方,问取完这个序列的最小花费是多少。

       首先,容易想到一个N^2的DP,dp[i]=min(dp[j-1]+v(j,i)^2),其中j=1..i,v(j,i)表示从j到i的序列中不同的颜色数,N是50000所以肯定要T...因为转移实际上是按不同的颜色数来转移的,所以可以用一个数组minp[k]来表示区间右端点为i时,出现k种颜色的序列的中,左端点的dp值最小的位置,也就是在确定上式中v(j,i)=k的时候,找最小的dp[j-1]。那么每次dp的时候,先维护一下minp[],然后枚举颜色数转移就行了,注意到最坏的情况也可以n个位置各自合并达到代价n,所以颜色数最多枚举到sqrt(n)就行了...维护minp[]的话,每次dp到i时,找一下a[i]左边最近的位置lp,如果minp[j]在lp,i之间,那么用minp[j]去尝试更新minp[j+1]的值,并且无论是否成功更新minp[j+1]都把minp[j]清零0,从1到sqrt(n)枚举完j后,手动处理一下边界minp[1],就是与i颜色相同并且位置连续的最左面的位置con[i],这个也可以预处理下来。

         

/*=============================================================================
#  Author:Erich
#  FileName:
=============================================================================*/
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <cstring>
#include <string>
#include <vector>
#include <map>
#include <queue>
#include <stack>
#define lson id<<1,l,m
#define rson id<<1|1,m+1,r

using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
const ll INF=1ll<<60;
const double PI=acos(-1.0);
int n,m;
const int maxn=100050;
ll dp[maxn];
int minp[maxn];
int a[maxn],b[maxn];
int last[maxn];
int c[maxn];
int con[maxn];
int main()
{
//	freopen("in.txt","r",stdin);
	while(~scanf("%d",&n))
	{
		for (int i=1; i<=n; i++) scanf("%d",&a[i]);
		for (int i=0; i<n; i++)
			b[i]=a[i+1];
		sort(b,b+n);
		m=unique(b,b+n)-b;
		map<int,int>mp;
		int sp=0;
		for (int i=0; i<n; i++)
			mp[b[i]]=sp++;
		for (int i=1; i<=n; i++)
			a[i]=mp[a[i]];
		memset(dp,0,sizeof dp);
		memset(minp,0,sizeof minp);
		memset(last,-1,sizeof last);
		memset(c,0,sizeof c);
		for (int i=1; i<=n; i++)
		{
			if (c[a[i]])	last[i]=c[a[i]];
			c[a[i]]=i;
		}

		int p1=1,p2=1;
		con[1]=1;
		while(p1<=n)
		{
            while(a[p2+1]==a[p1]) p2++,con[p2]=p1;
            p1=p2+1;
            p2=p1;
            con[p2]=p1;
		}
		m=min(m,(int)sqrt((double)n));
//        m=min(m,5);
		for (int i=1; i<=n; i++)
		{
		    int lp=last[i];
			for (int j=m; j>=1; j--)
			{
				if (minp[j])
				{
					if (minp[j]>lp)
					{
					    if (minp[j+1]==0 || dp[minp[j+1]]>dp[minp[j]]) minp[j+1]=minp[j];
					    minp[j]=0;
					}
				}
			}
			minp[1]=con[i];
			dp[i]=dp[i-1]+1;
			for (int j=m; j>=1; j--)
			{
				if (minp[j])
				{
					int p=minp[j];
					dp[i]=min(dp[i],dp[p-1]+(ll)j*j);
				}
			}

		}
		printf("%I64d\n",dp[n]);
	}
	return 0;
}

   

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值