343. 整数拆分
记住拆分的套路,j的上限要注意。
有一个定理:
拆分一个数n 使之乘积最大,那么一定是拆分成m个近似相同的子数相乘才是最大的
class Solution {
public:
int integerBreak(int n) {
vector<int> dp(n + 1);
dp[2] = 1;
for (int i = 3; i <= n ; i++) {
for (int j = 1; j <= i / 2; j++) {
dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
}
}
return dp[n];
}
};
96.不同的二叉搜索树
这道题第二遍看还是没有记住思路。
再次记住思路。
推导递推公式时,注意从dp【0】、dp【1】试着推公式。可以发现规律;
dp【n】就是分别以这n个数为头结点,剩下n-1个元素去进行组合,分别放到当前选定节点的左右孩子上。
i从1开始的话,左面放i-1个,右面放n-i个。
所以:递推公式:
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= i; j++) {
dp[i] += dp[j - 1] * dp[i - j];
}
}
全部;
class Solution {
public:
int numTrees(int n) {
vector<int> dp(n + 1);
dp[0] = 1;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= i; j++) {
dp[i] += dp[j - 1] * dp[i - j];
}
}
return dp[n];
}
};