刷题打卡day41第九章 动态规划:343. 整数拆分、 96.不同的二叉搜索树

文章讲述了使用动态规划方法解决两个问题:一是如何拆分一个整数以获得最大乘积,强调拆分成近似相同的子数乘积最大;二是构建不同的二叉搜索树,通过递推公式计算以特定节点为根的不同结构树的数量。
摘要由CSDN通过智能技术生成

343. 整数拆分

记住拆分的套路,j的上限要注意。

有一个定理:

拆分一个数n 使之乘积最大,那么一定是拆分成m个近似相同的子数相乘才是最大的

class Solution {
public:
    int integerBreak(int n) {
        vector<int> dp(n + 1);
        dp[2] = 1;
        for (int i = 3; i <= n ; i++) {
            for (int j = 1; j <= i / 2; j++) {
                dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
            }
        }
        return dp[n];
    }
};

 96.不同的二叉搜索树 

这道题第二遍看还是没有记住思路。

再次记住思路。

推导递推公式时,注意从dp【0】、dp【1】试着推公式。可以发现规律;

dp【n】就是分别以这n个数为头结点,剩下n-1个元素去进行组合,分别放到当前选定节点的左右孩子上。

i从1开始的话,左面放i-1个,右面放n-i个。

所以:递推公式:

for (int i = 1; i <= n; i++) {
    for (int j = 1; j <= i; j++) {
        dp[i] += dp[j - 1] * dp[i - j];
    }
}

全部;

class Solution {
public:
    int numTrees(int n) {
        vector<int> dp(n + 1);
        dp[0] = 1;
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= i; j++) {
                dp[i] += dp[j - 1] * dp[i - j];
            }
        }
        return dp[n];
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值