自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(260)
  • 收藏
  • 关注

原创 不同AI架构如何选择?单Agent+MCP“与“多Agent“架构对比分析!

摘要: 构建AI应用时,开发者面临选择单一智能体搭配MCP协议或多智能体系统(MAS)的难题。单一智能体+MCP架构简单高效,适合快速上线的中小项目,但随着工具增多可能面临性能瓶颈;MAS系统分工明确、扩展性强,更适合复杂任务和高并发场景,但设计维护成本较高。典型案例显示,客服系统适合单一智能体,而投资分析等专业场景更适合MAS。技术发展将推动协议标准化和智能体自组织能力,未来混合架构可能成为趋势。选择架构需权衡效率与复杂度,关键在于匹配业务需求和技术能力。

2025-06-13 14:57:54 129

原创 运营岗位最核心的工作内容是什么?

运营工作的核心流程是以目标为导向的循环体系:设定目标→生产内容/活动→触达用户→收集反馈→分析优化。具体包括:1)明确目标并拆解为可执行任务;2)准备运营"弹药"(内容创作、活动策划、数据维护);3)多渠道精准触达用户;4)实时监控数据与用户反馈;5)分析效果并持续优化。运营本质是连接用户与产品的持续性工作,强调执行力、跨部门协作和微迭代优化,通过扎实的常规工作积累业务价值。优秀的运营既要完成基础动作,更要思考如何提升效率与精准度。

2025-06-13 08:53:55 315

原创 Spring AI Alibaba 1.0 GA 正式发布,Java智能体开发进入新时代(转载阿里云)

2025年将迎来AI智能体的爆发式发展,SpringAIAlibaba 1.0作为首个企业级Java智能体框架正式发布。该框架基于SpringAI,提供多智能体编排、企业级生态集成和通用智能体开发能力,支持从低代码到零代码的智能体构建。核心功能包括Graph工作流引擎、百炼平台深度集成、MCP协议支持,以及JManus通用智能体平台。开发者可通过简单依赖快速构建ChatBot、工作流等应用,并体验官方Playground示例。框架还与企业级工具链(如Nacos、ARMS)深度整合,解决了智能体生产中效果评估

2025-06-13 08:53:12 408

原创 MySQL的自增主键耗尽怎么办?

MySQL自增主键耗尽问题解析及解决方案 当MySQL的自增主键达到INT UNSIGNED上限(4294967295)时,系统会因主键冲突而拒绝新数据插入。问题本质是InnoDB引擎在达到最大值后不再自增,而是复用当前值导致冲突。 解决方案: 升级字段类型:将INT改为BIGINT,支持更大数据量 分布式ID架构:采用雪花算法或号段模式生成全局唯一ID 数据管理:实施分库分表和定期归档策略 预防建议: 定期监控自增ID使用率,提前规划扩展方案,避免业务中断。大表操作需使用在线工具,确保系统平稳过渡。

2025-06-12 09:07:27 218

原创 电商订单拆单:7大拆单场景深度解析

电商订单拆单机制解析:拆单作为电商后台核心功能,既可优化物流(如多仓协同、冷链分箱),又可能引发客诉(如优惠失效)。常见7大场景:1)多商家订单拆分,2)多仓库发货,3)商品属性差异(如生鲜/常温),4)物流成本优化,5)支付/权益冲突,6)现货预售混单,7)售后逆向重组。系统需配置规则引擎、透明化用户界面及售后联动模块,平衡效率与体验。合理拆单可降本30%,但需规避运费叠加、优惠分摊等坑点,否则将导致财务损失和用户体验崩塌。

2025-06-12 09:01:03 352

原创 为什么刚看的商品下一秒就出现在某音里?揭秘跨平台追踪技术

手机广告精准推送背后的秘密:通过设备ID(iOS的IDFA/安卓的OAID)标记用户兴趣标签,广告联盟SDK实现跨平台数据共享,并在用户打开App时以毫秒级速度完成实时竞价展示广告。核心技术CID追踪点击转化效果,确保广告效果可衡量。用户可通过关闭个性化广告、重置设备ID或使用隐私模式降低广告精准度。这套系统每年为广告商创造数千亿价值,却也引发隐私保护讨论。

2025-06-12 09:00:08 276

原创 AI分页革命!MCP+Agent+大模型实现百万字电子书秒级解析,让大模型榨干每一本电子书

摘要:本文介绍了一个通过MCP+Agent+大模型协同处理大体积电子书的技术方案。系统支持PDF、Word、EPUB等多种格式,核心功能包括:1)按页面/章节拆分电子书;2)OCR图像识别;3)多格式内容解析;4)大模型自动总结与翻译;5)HTML输出美化。实现过程分为MCP服务端开发(含文件解析、OCR引擎等模块)、Agent流程编排(负责任务调度)和大模型内容处理三个层次。测试案例显示,该系统能有效突破大模型附件体积限制,完成整书的结构化处理与智能摘要。开发重点在于合理划分各组件职能及优化Agent的P

2025-06-11 09:24:10 792

原创 项目管理者的一些思路

项目管理的核心在于流程思维,而非个人能力。文章指出,项目失败常归咎于各种表面原因,但真正问题在于流程不通。具备流程思维的管理者能搭建清晰框架,明确各环节责任、节点和交付标准,确保项目自动推进。关键在于:1)全局视角优先于细节;2)每个步骤必须可交付;3)流程作为跨部门协作纽带。通过系统化落地流程(如建立标准化模板、设置任务依赖关系、可视化监控等),可减少人为干预,实现项目自动运转。流程思维是项目从混乱走向有序的关键能力,能让团队协作更高效,问题定位更精准。

2025-06-11 08:56:09 906

原创 一文读懂: AI 智能体 的 架构原则、3高架构、 存储架构 的核心方案

搞架构设计就像开车,新手只管踩油门,老司机得懂看路况预判风险。你说那些熔断、隔离、双活的设计,不就是给系统系安全带、装安全气囊吗?见过太多团队前期图省事,后期天天救火。就跟装修不舍得买好电线,住进去三天两头跳闸。所以说啊,架构师的眼光得比业务跑得快半步,既要扛得住今天的量,还要兜得住明天的险。这行当最迷人的地方就在这儿——你设计的每个决策,都在默默守护着千万用户的体验。当用户丝滑地用着AI功能时,哪知道后台经历过多少惊心动魄的战役?这份深藏功与名的成就感,不就是技术人最好的奖赏吗?

2025-06-10 09:21:09 461

原创 AI实现智能客服:AI客服的核心能力RAG介绍

想象你有个学霸朋友,他上知天文下知地理,但偶尔会一本正经地胡说八道:比如把明星八卦说成五年前旧闻,把公司报销政策编出根本不存在的条款,甚至在你问"今天股市行情"时,用2021年的数据跟你分析走势。这种"先查资料再作答"的机制,让通用AI秒变精通你公司规章制度、产品参数、行业标准的专属顾问,而且资料库更新时,AI的认知会自动升级,无需重新训练这个"钢铁大脑"。对于这种客服系统,RAG 可以动态地将用户的询问与最新的产品信息、客服知识等外部数据相结合,生成的回答更加贴合客户的实际需求,且满足企业要求。

2025-06-10 09:19:52 643

原创 AI 写高考作文,最终还是绕不过 AI 的检测

高考的作文每年都会上热搜现在 AI 发展的这么快,用来写一篇高考作文没有任何难度但是现在的 AI 技术能够检测出来是 AI 的文章嘛?下面是今年全国二卷的高考作为题目我们尝试用 AI 来写一篇高考作文然后用目前已有的一些 AI 检测工具来进行检测看看是否能够用魔法打败魔法正好 DeepSeek 刚刚完成了版本升级,各方面效果都更进一步那我们就用 DeepSeek 来完成这篇写作首先我没有加任何限制的提示词,没有限制必须采用某种风格这是思考过程下面是生成的文章,看题目和内容是真的不错。

2025-06-09 10:47:33 950

原创 MCP:从入门到精通,从精通到放弃,理论 + 实践吃透 大火的 MCP 协议

MCP(Model Context Protocol)是由Anthropic提出的标准化协议,旨在解决AI模型与外部工具和数据交互的碎片化问题。它通过定义统一的接口规范,使LLM能够动态调用外部工具和服务,扩展能力边界。MCP采用客户端-服务器架构,支持Stdio和SSE两种通信方式,实现了工具发现、能力协商和双向交互。 相比传统Function Call,MCP具有三大优势:1)生态开放性,提供丰富现成工具插件;2)平台无关性,支持跨模型切换;3)数据安全性,敏感数据可本地处理。其核心创新是将工具描述通过

2025-06-09 08:59:02 684

原创 智能体开发实战|基于Dify+MCP实现通过微信发送天气信息给好友

基于Dify搭建的智能体案例,不仅展示了从语义理解到工具调用的完整决策链路,更印证了MCP协议在降低开发成本和加速应用落地方面的工程意义。

2025-06-09 08:56:14 739

原创 企业AI落地开源三剑客:Dify、RAGFlow、n8n

但是它对电脑配置的要求很高,因为它的定位是给企业使用,而不是针对个人的,所以建议选择Linux服务器安装(如果个人想Mac安装使用,有很多的坑)。所以越是好用的工具,越想充分发挥出工具的特性,往往需要一定的技术储备。安装:配属上,推荐4核+8G即可,但为了更好的扩展性,也可以参考下面官方推荐的配置,但我个人感觉前期没必要堆那么多核的CPU,反而内存应该稍微大一些。先抛出大家最感兴趣和最关心的,下面是我使用后总结出来的三者区别,大家赶紧Mark住,可不是网上随便找来或AI生成凑数的,绝对都是真实的使用感受。

2025-06-08 11:05:55 923

原创 打造超级AI助手:掌握Reflection模式,让你的Agent智商暴涨!

Reflection模式不仅仅是一种技术,它代表了AI向真正智能迈进的重要一步。通过赋予AI自我反思的能力,我们正在创造能够不断自我完善的人工智能系统。想象一下,你的AI助手能够从每次互动中学习,记住过去的错误并避免重蹈覆辙,不断优化自己的表现。这不再是科幻,而是正在发生的现实!对开发者来说:掌握Reflection模式将让你的AI产品脱颖而出,具备持续学习和自我改进的能力,为用户提供越来越精准的服务。对企业来说。

2025-06-07 10:38:27 756

原创 “单Agent+MCP“与“多Agent“架构对比分析(下):实践案例、部署策略与未来展望

本文深入探讨了单一智能体+MCP与多智能体系统在实际项目中的具体实现方案。通过三个典型案例展示了不同场景下的架构选择:客户服务助手采用单一智能体+MCP架构,金融分析系统采用多智能体协作,电商平台则采用混合架构实现多功能集成。文章详细分析了各方案的技术实现要点,并提供了主流技术栈选择指南和部署策略建议。最后指出未来智能体系统将向标准化、自组织网络、混合架构等方向发展,强调架构选择需要根据业务需求、技术约束和发展路径进行综合评估,没有放之四海而皆准的最佳方案。

2025-06-06 08:55:10 1099

原创 “单Agent+MCP“与“多Agent“架构对比分析(上):概念、优劣势与架构选择

《AI智能体架构选择:单一智能体+MCP vs 多智能体系统》 本文探讨AI开发中的关键架构选择。单一智能体+MCP方案通过标准协议集成工具,具有快速原型、集中式管理和资源效率等优势,但随着复杂度增加会面临编排困难和性能瓶颈。多智能体系统(MAS)采用专业化分工,在任务分解、并行处理和容错性方面表现突出,但存在协调开销和调试难度。二者并非互斥:MCP可作为基础层,A2A协议支持智能体间通信。选择标准取决于场景需求:简单工具集成适合单一智能体,高度复杂问题则需MAS。建议采用渐进式演进策略,结合成熟框架构建灵

2025-06-06 08:54:16 1014

原创 需求面前,该选 Agent 还是 Workflow?

AIAgent与AIWorkflow的技术对比与应用分析 人工智能领域的AIAgent和AIWorkflow代表两种不同的技术路径。AIAgent具备自主感知、决策和行动能力,适用于复杂场景(如自动驾驶、智能客服),具有高度灵活性和学习能力,但初期投入较大。AIWorkflow通过分解任务实现流程自动化,适合结构化场景(如企业流程、制造业质检),具有开发快速、可靠性高的特点,但灵活性不足。两者在性能、可靠性和用户满意度上各具优势:AIAgent擅长处理不确定性任务,AIWorkflow则精于标准化流程。未来

2025-06-06 08:53:22 731

原创 AG技术全解析:从基础原理到优化实战

RAG(检索增强生成)是一种无需微调即可扩充大模型知识的方法,通过检索外部知识库提升生成答案的准确性和时效性。其流程分为构建向量存储(文档加载、分块、向量化)和检索生成(相似度搜索、上下文整合)两部分。优化RAG的关键技术包括文档分块策略(固定长度、语义分块等)、相似度算法(余弦相似度、BM25等)、重排序(交叉编码器)以及GraphRAG(知识图谱增强)。评估RAG需关注检索质量(准确率/召回率)和生成质量(相关度/忠诚度)。RAG的局限性包括检索依赖外部数据质量、分块碎片化、语义相关不等于答案相关等问题

2025-06-06 08:52:33 657

原创 一文搞懂:AI Agent 八大核心概念

本文系统介绍了AI领域的8个核心技术概念:1. 智能体(Agent)是能独立行动的AI实体,可执行特定任务,但存在准确性不足的幻觉问题。2. 多智能体系统(Multi-Agent System)通过多个智能体协同工作提升效率,但需解决系统容错问题。3. RAG技术通过检索外部知识库生成更准确的回答,但依赖高质量的知识库管理。4. 工作流(WorkFlow)将任务分解为标准化步骤执行,能减少智能体的幻觉问题。5. 微调(Fine-Tuning)利用行业数据训练模型,提升业务理解能力,但数据成本和标注要求高。6

2025-06-05 08:46:47 571

原创 两个小时,搭出一套员工薪酬绩效管理系统(转载,推荐)

《三步搭建实用薪酬绩效系统:让发工资不再"拍脑袋"》 摘要: 许多企业在薪酬绩效管理上陷入困境:老板凭感觉发工资,HR机械填表,员工抱怨"干多干少一个样"。本文提出三步搭建实用系统的方案:首先明确目标(解决发钱依据、区分贡献、明确激励、控制成本);其次把握底层逻辑(岗位价值定底薪、绩效表现定奖金、工作量定提成);最后通过五个模块落地实施(员工岗位档案、标准化绩效评价、流程化奖金审批、自动化薪酬计算、可视化数据分析)。系统强调实用为先,建议从最小闭环开始,逐步迭代优化,

2025-06-05 08:45:35 472

原创 SpringAI(GA):RAG快速上手+模块化解读

Spring AI教程:RAG增强问答质量快速上手与源码解析 摘要:本教程基于JDK21+SpringBoot3.4.5+SpringAI1.0.0环境,详细讲解检索增强生成(RAG)技术。首先介绍RAG核心概念,通过内存向量数据库实现典型案例,展示Pre-Retrieval、Retrieval、Generation全流程实战。随后深入解析模块化RAG架构源码,包括RetrievalAugmentationAdvisor、Query转换/扩展组件、Document检索/合并处理器等核心类。教程通过对比普通问

2025-06-04 09:57:53 944

原创 “单Agent+MCP“与“多Agent“架构对比分析(上):概念、优劣势与架构选择

选择合适的智能体架构需要深入理解应用需求、系统复杂性和演进路径。单一智能体+MCP凭借其简单性和集成便利性在许多场景下是理想选择,而多智能体系统则在处理高复杂性、高可靠性需求方面展现出独特优势。理解这两种架构的优劣势,将帮助大家在AI应用开发中做出更明智的决策,构建既能满足当前需求又具有未来扩展能力的系统。在下篇文章中,我们将深入探讨这两种架构的实际应用案例、具体实现方法,帮助大家将理论知识转化为实践。

2025-06-04 07:28:13 1413

原创 谷歌突袭发布AI应用,无需Wi-Fi、手机就能跑大模型!网友实测两极分化(转载)

谷歌推出实验性应用Google AI Edge Gallery,允许安卓用户离线运行Hugging Face的AI模型,支持图像问答、文本处理和AI聊天等功能。该应用强调本地处理带来的隐私保护和低延迟优势,但实际体验因设备性能而异,部分用户报告应用崩溃问题。虽然被质疑是TensorFlow Lite的重新包装,且与苹果CoreML存在差距,但其跨平台特性仍具价值。目前仅提供APK下载,iOS版本即将推出,开发者可在GitHub获取相关资源。

2025-06-03 15:38:45 841

原创 从L1到L5:解码AI智能体的技术阶梯— 基于权威研究的完整学习路径

摘要:AI智能体时代已至,市场预计2028年33%企业软件将集成自主AI。基于SAE自动驾驶分级标准,AI智能体被划分为L1-L5渐进式技术等级:L1掌握基础对话(如ChatGPT)、L2精通RAG架构(如NotebookLM)、L3驾驭多Agent协作(如文心智能体)、L4实现无代码开发(如Coze)、L5突破AI编程(如GitHub Copilot)。权威机构预测该技术将创造4.4万亿美元生产力价值,建议从业者根据能力匹配对应等级,通过工具实践和社区参与构建AI竞争力。(149字)

2025-06-03 10:45:06 1050

原创 AI智能体常用五大范式:反思、工具、推理、规划与多智能体协作

本文系统梳理了当前AI领域五大主流智能体范式:1)反思模式通过自我批判实现认知优化;2)工具调用模式扩展AI能力边界;3)推理-行动闭环实现认知与行为的统一;4)规划分解模式处理复杂任务;5)多智能体协作展现社会化智能。这些范式反映了AI从单一功能向自主决策、自我优化、社会协作方向的进化,不仅推动了技术进步,也为实现通用人工智能奠定基础。通过模仿人类认知机制和行为模式,智能体正在从工具向伙伴转变,在"心智"成长的道路上不断突破。

2025-06-03 10:42:55 836

原创 高性能WEB服务器Nginx常用功能:四层访问控制、账户认证、自定义错误页面、检查资源是否存在

Nginx常用功能摘要:Nginx提供多种实用功能,包括基于IP的四层访问控制(通过ngx_http_access_module模块实现IP黑/白名单配置);账户认证功能(采用ngx_http_auth_basic_module模块实现基础认证,需配合htpasswd工具生成密码文件);自定义错误页面(通过error_page指令指定不同状态码的响应页面);独立错误日志配置(为不同server/location设置专属日志文件);资源检测机制(使用try_files指令按优先级检查资源是否存在)。这些功能通

2025-06-03 08:58:14 172

原创 SpringBoot扫码登录实现

本文基于SpringBoot框架实现了一个完整的扫码登录系统DEMO。

2025-06-02 09:53:58 789

原创 RAG技术:优化知识库,解决AI答非所问

在AI大模型席卷全球的今天,Retrieval-Augmented Generation(RAG,检索增强生成)作为一种融合检索与生成的技术,正成为企业和开发者提升AI能力的核心工具。GTE模型以其高效的语义表示能力,能够捕捉文档的深层语义,显著提升RAG的语义检索能力,减少传统“关键词匹配”的局限。作为亲历三次AI浪潮的技术人,我坚信AI不是替代人类,而是让我们从重复工作中解放出来,专注于更有创造性的事情,关注我们公众号口袋大数据,一起探索大模型落地的无限可能!语义优化:使用清晰、简洁的语言,避免歧义。

2025-05-31 18:31:27 648

原创 线上重复消费引发百万损失!RocketMQ重复消费问题排查与解决方案全纪实

消息重复消费不是偶然现象,而是分布式系统中的常见问题。// 适当延长超时时间给架构师的建议• 核心业务必须实现幂等• 去重表要加双唯一索引(消息ID+业务ID)• 读写分离提升性能• 定期归档历史数据给运维的建议• 监控消息重复率(超过0.1%告警)• 定期检查消费者积压情况• 设置去重表空间不足告警血泪经验:在支付系统上线去重表后,我们又陆续在订单、库存、优惠券等10多个核心系统推广该方案。UNIQUE KEY `uniq_msg_id` (`msg_id`), -- 消息ID唯一。

2025-05-31 17:41:53 316

原创 深入解析RSA算法原理及其安全性机制

RSA算法通常用于数字签名、身份验证和数据加密等场景。它的优点在于易于实现和理解,同时具有较高的安全性。

2025-05-30 18:04:53 567

原创 一张图说明白品牌、营销、推广、运营、经营的核心要点,打通认知心智!

涵盖内容运营、渠道运营、商品运营、用户运营等,以淘宝为例,通过优质内容推荐、多样化渠道拓展、丰富商品品类管理和用户会员体系运营,提升用户体验和平台活跃度。涉及前台、中台、后台的战略、组织、流程等全方位规划,如华为通过持续的战略创新、高效的组织管理和优化的业务流程,在全球通信市场占据领先地位。企业侧则是线上线下引流,增加曝光。品牌是内核,营销是手段,推广是途径,运营是保障,经营是统领。在当今竞争激烈的商业环境中,品牌、营销、推广、运营和经营,犹如支撑企业大厦的五根关键支柱,各自发挥着独特而不可或缺的作用。

2025-05-29 10:02:34 161

原创 还在用 ELK?你已经 Out 了

接下来,我们需要编写采集日志所需的 Vector 配置。这一部分是 Vector 的 File Source[10],Source 是 Vector 的数据输入端,可以从各种适配的来源采集数据。我们通过指定使用 File Source,include选项用于配置文件地址(include可以使用通配符配置多个日志文件,见文档[11]。最后我们需要配置data_dir来指定一个元数据目录,Vector 默认的路径是这一部分就是 GreptimeDB logs sink[12]。

2025-05-29 08:57:55 989

原创 Redis统计访问量的3种实战方案

Redis解决统计难题的3种核心方案 Hash结构:适用于精确统计和小规模场景,通过时间戳去重,内存优化后可降至<1MB/万用户 BitMap:亿级用户UV统计的理想选择,每个用户仅占1bit,100万用户只需125KB内存 HyperLogLog:超大规模近似统计,误差率<0.8%,百万级用户内存占用<1KB 选择建议: 小规模精确统计用Hash 大规模精确去重用BitMap 超大规模近似统计用HyperLogLog 可混合使用多种方案优化性能

2025-05-29 08:51:28 387

原创 大模型微调知识与实践分享(转载阿里云)

本文系统介绍了大语言模型(LLM)的微调技术与实践。首先解析了Transformer模型架构及其参数量计算,包括LLaMA系列模型的参数规模与显存需求。重点阐述了微调方法:从提示工程(Prompt Engineering)到数据构造策略,详细介绍了LoRA低秩适应技术及其参数优化原理。在实践部分,提出了完整的微调流程:数据构造→训练平台选择→参数调整→模型部署→效果评估。特别分享了基于星云平台和LLaMA-Factory框架的实操经验,包括DPO训练、推理加速等技术细节。最后强调数据质量对微调效果的关键作用

2025-05-28 15:33:14 598

原创 最新智能体落地案例:10大行业,20个场景,看谁在用AI赚钱

《AI智能体落地应用与商业价值分析》摘要:本文从30+真实案例出发,揭示当前最具ROI的AI智能体应用场景。在零售业,智能体用于客户管理(中医养生)和销售转化(美业);电商领域则应用于内容生成和私域运营;教育行业通过智能体优化招生与学习辅导。房地产、法律咨询、医疗健康、金融保险、餐饮连锁、人力资源及制造业也展示了智能体的实际价值,如提高转化率、降低人力成本和标准化流程。成功案例显示,明确业务痛点、快速迭代和注重ROI是智能体落地的关键。文章强调,AI智能体已从概念验证步入业务增效阶段,建议企业尽早实践以获取

2025-05-28 09:32:29 1137

原创 AI 智能体 的 架构原则、3高架构、 存储架构 的核心方案

搞架构设计就像开车,新手只管踩油门,老司机得懂看路况预判风险。你说那些熔断、隔离、双活的设计,不就是给系统系安全带、装安全气囊吗?见过太多团队前期图省事,后期天天救火。就跟装修不舍得买好电线,住进去三天两头跳闸。所以说啊,架构师的眼光得比业务跑得快半步,既要扛得住今天的量,还要兜得住明天的险。这行当最迷人的地方就在这儿——你设计的每个决策,都在默默守护着千万用户的体验。当用户丝滑地用着AI功能时,哪知道后台经历过多少惊心动魄的战役?这份深藏功与名的成就感,不就是技术人最好的奖赏吗?

2025-05-28 09:00:04 1517

原创 微服务网关升级:Spring Cloud Gateway 整合 Nacos 实现服务请求自动转发+负载均衡!

本文介绍了SpringCloudGateway与服务注册中心和配置中心的高级整合应用。首先讲解如何整合Nacos服务注册中心实现自动路由转发,通过配置动态代理所有注册服务,并以服务名作为URI自动创建路由。随后详细说明通过Nacos配置中心实现路由规则动态加载的方法,将路由配置从网关中抽离,实现动态刷新功能。文章包含具体的代码示例和配置说明,演示了如何构建网关服务与业务微服务,并验证了负载均衡和动态路由的效果。这种整合方式可以有效简化微服务架构中的API网关管理和配置维护工作。

2025-05-28 08:52:22 290

原创 SpringAI整合Ollama实战,DeepSeek/通义千问接入指南

SpringAI是一个基于Spring生态系统的AI应用框架,通过模块化设计和POJO简化AI项目开发。它支持多种主流AI模型(OpenAI、Azure等),并实现与SpringBoot的无缝集成。本文演示了如何使用SpringAI结合Ollama搭建AI应用:先配置JDK17、Maven等环境,拉取DeepSeek和千问模型;在SpringBoot项目中添加spring-ai-ollama依赖;通过配置文件指定模型,在测试类中仅用一行代码就实现了大模型对话功能。案例展示了SpringAI高效集成AI能力的

2025-05-27 10:59:17 447

原创 扣子Coze工作流,coze智能体和 AI 应用从入门到精通搭建

1. Coze(扣子)的定位与核心价值Coze 是字节跳动自主研发的智能体开发与部署平台,聚焦于C 端用户与企业开发者,旨在降低大模型应用的开发门槛。通过其可视化操作界面与模块化工具,用户无需编写复杂代码,即可快速构建基于大语言模型的智能体应用,并将其嵌入多场景终端。二、Coze(扣子)的多元应用场景Coze 平台以零代码与低代码开发模式为核心,极大降低了技术门槛,即使是没有编程经验的用户,也能轻松在平台上构建各类智能体(Bot)。

2025-05-27 09:26:41 1732

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除