希尔排序
希尔排序又称为缩小增量排序,其原理如下:先将待排序的数组元素分成多个子序列,使得每个子序列的元素个数相对较少,然后对每个子序列分别进行直接插入排序,待整个序列基本有序后,再对所有元素进行一次快速排序。
希尔排序的步骤:
选择一个步长序列:t1,t2,t3,t4,…,tk,满足ti > tj(i<j),tk=1;
对于步长序列为k,对待排序序列进行k趟排序。
每趟排序,根据对应步长ti,将待排序序列分割成ti个子序列,分别对各个子序列进行直接插入排序。
注意:当步长为1的时候,所有元素作为一个序列来处理,其长度为n。
代码:
public static void shellSort(int[] array) {
int length = array.length;
int i, j;
int h;
int tmp;
for (h = length / 2; h > 0; h /= 2) {
for (i = h; i < length; i++) {
tmp = array[i];
for (j = i - h; j >= 0; j -= h) {
if (tmp < array[j]){
array[j+h] = array[j];
}
else break;
}
array[j+h] = tmp;
}
}
}
希尔排序的特点:
希尔排序的关键并不是随便的分组然后各自排序,而是将相隔某个增量的记录组合成一个子序列,然后跳跃式移动,使得排序的效率提高。
堆排序
介绍到了堆排序,避免不了需要了解下大顶堆和小顶堆的概念:
大顶堆:对于给定的n个序列(r(1), r(2), r(3),…,r(n)),仅当满足条件(r(i) > r(2i)且r(i) > r(2i+1))时,称之为大顶堆,堆顶元素为最大值。
小顶堆:对于给定的n个序列(r(1), r(2), r(3),…,r(n)),仅当满足条件(r(i) < r(2i)且r(i) < r(2i+1))时,称之为小顶堆,堆顶元素为最小值。
堆排序的基本思想:
对于给定了的n个记录,初始时把这些记录看成一颗顺序存储的二叉树,然后调整成为一个大顶堆,然后将堆的最后一个元素和堆顶元素进行交换,最后一个元素就是最大的元素了。接着再将前面(n-1)个元素重新调整成为一个新的大顶堆,再将堆顶元素和最后一个元素进行交换得到最大的元素。依次类推…
代码实现:
public static void adjustMinHeap(int[] a, int pos, int len) {
int temp;
int child;
for (temp = a[pos]; 2 * pos + 1 <= len; pos = child) {
child = 2 * pos + 1;
if (child < len && a[child] > a[child + 1]) {
child++;
}
if (a[child] < temp) {
a[pos] = a[child];
} else
break;
}
a[pos] = temp;
}
public static void myMinHeapSort(int[] array) {
int i;
int len = array.length;
for (i = len / 2 - 1; i >= 0; i--)
adjustMinHeap(array, i, len - 1);
for (i = len - 1; i >= 0; i--) {
int tmp = array[0];
array[0] = array[i];
array[i] = tmp;
adjustMinHeap(array, 0, i - 1);
}
}
这里我的代码没有注释,其实我也没认真搞懂整个堆排序,原理是懂了,代码是从书上Copy的,就先放在这等以后用得上回头再看。
下一篇:各种排序算法的优劣,冲冲冲