Time Limit: 10 Sec
Memory Limit: 128 MB
Description
永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示。某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达另一个岛。如果从岛 a 出发经过若干座(含 0 座)桥可以到达岛 b,则称岛 a 和岛 b 是连 通的。现在有两种操作:B x y 表示在岛 x 与岛 y 之间修建一座新桥。Q x k 表示询问当前与岛 x连通的所有岛中第 k 重要的是哪座岛,即所有与岛 x 连通的岛中重要度排名第 k 小的岛是哪 座,请你输出那个岛的编号。
Input
输入文件第一行是用空格隔开的两个正整数 n 和 m,分别 表示岛的个数以及一开始存在的桥数。接下来的一行是用空格隔开的 n 个数,依次描述从岛 1 到岛 n 的重要度排名。随后的 m 行每行是用空格隔开的两个正整数 ai 和 bi,表示一开始就存 在一座连接岛 ai 和岛 bi 的桥。后面剩下的部分描述操作,该部分的第一行是一个正整数 q, 表示一共有 q 个操作,接下来的 q 行依次描述每个操作,操作的格式如上所述,以大写字母 Q 或B 开始,后面跟两个不超过 n 的正整数,字母与数字以及两个数字之间用空格隔开。 对于 20%的数据 n≤1000,q≤1000
对于 100%的数据 n≤100000,m≤n,q≤300000
Output
对于每个 Q x k 操作都要依次输出一行,其中包含一个整数,表 示所询问岛屿的编号。如果该岛屿不存在,则输出-1。
题目分析
平衡树用Treap,Splay,SBT什么的都行
主要在于合并操作
初始时对于每个结点单独建立一棵treap
再用一个并查集维护连通性
合并x和y时先判断两点是否已联通
若没有
则将节点总数较小的treap中保存的权值暴力插入另一棵
这就是所谓的启发式合并
询问kth直接在并查集中找到x的祖宗
然后以在以它为树根的树上查询
#include<iostream>
#include<vector>
#include<algorithm>
#include<queue>
#include<cstring>
#include<cstdio>
using namespace std;
int read()
{
int f=1,x=0;
char ss=getchar();
while(ss<'0'||ss>'9'){if(ss=='-')f=-1;ss=getchar();}
while(ss>='0'&&ss<='9'){x=x*10+ss-'0';ss=getchar();}
return f*x;
}
const int maxn=100010;
int n,m,q;
int ch[maxn<<3][2],val[maxn<<3];
int sum[maxn<<3],rnd[maxn<<3],rt[maxn];
int fa[maxn],pos[maxn],tot;
void update(int p){sum[p]=sum[ch[p][0]]+sum[ch[p][1]]+1;}
void rotate(int &p,int d)
{
int k=ch[p][d^1];
ch[p][d^1]=ch[k][d];
ch[k][d]=p;
update(p); update(k);
p=k;
}
void ins(int &p,int x)
{
if(!p){ p=++tot; val[p]=x; rnd[p]=rand(); sum[p]=1; return;}
int d=x<val[p] ?0:1;
ins(ch[p][d],x);
if(rnd[ch[p][d]]<rnd[p]) rotate(p,d^1);
update(p);
}
void dfs(int &p1,int &p2)//深搜遍历把每个结点权值插入另一棵
{
if(!p1) return;
if(ch[p1][0]) dfs(ch[p1][0],p2);
if(ch[p1][1]) dfs(ch[p1][1],p2);
ins(p2,val[p1]); //delete(p1);
}
int find(int x)
{
if(x==fa[x]) return x;
else return fa[x]=find(fa[x]);
}
void merge(int u,int v)
{
int fu=find(u),fv=find(v);
if(fu!=fv)
{
if(sum[rt[fu]]>sum[rt[fv]]) swap(fu,fv);
fa[fu]=fv; dfs(rt[fu],rt[fv]);//将结点总数少的暴力插入另一棵
//注意fa[fu]=fv一定要在交换完后赋
}
}
int kth(int p,int k)
{
int ss=sum[ch[p][0]];
if(k<=ss) return kth(ch[p][0],k);
else if(k<=ss+1) return val[p];
else return kth(ch[p][1],k-ss-1);
}
int main()
{
n=read();m=read();
for(int i=1;i<=n;++i)
{
int x=read();
fa[i]=i; pos[x]=i;//pos记录权值对应的节点编号
ins(rt[i],x);//单独建树
}
for(int i=1;i<=m;++i)
{
int u=read(),v=read();
merge(u,v);
}
q=read();
while(q--)
{
char ss; scanf("%s",&ss);
if(ss=='Q')
{
int u=read(),k=read();
int ff=find(u);
if(sum[rt[ff]]<k) printf("-1\n");
else printf("%d\n",pos[kth(rt[ff],k)]);
}
else if(ss=='B')
{
int u=read(),v=read();
merge(u,v);
}
}
return 0;
}