BZOJ3669 || 洛谷P2387 [Noi2014]魔法森林【LCT】

Time Limit: 30 Sec
Memory Limit: 512 MB

Description

为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士。魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M。初始时小E同学在号节点1,隐士则住在号节点N。小E需要通过这一片魔法森林,才能够拜访到隐士。

魔法森林中居住了一些妖怪。每当有人经过一条边的时候,这条边上的妖怪就会对其发起攻击。幸运的是,在号节点住着两种守护精灵:A型守护精灵与B型守护精灵。小E可以借助它们的力量,达到自己的目的。

只要小E带上足够多的守护精灵,妖怪们就不会发起攻击了。具体来说,无向图中的每一条边Ei包含两个权值Ai与Bi。若身上携带的A型守护精灵个数不少于Ai,且B型守护精灵个数不少于Bi,这条边上的妖怪就不会对通过这条边的人发起攻击。当且仅当通过这片魔法森林的过程中没有任意一条边的妖怪向小E发起攻击,他才能成功找到隐士。

由于携带守护精灵是一件非常麻烦的事,小E想要知道,要能够成功拜访到隐士,最少需要携带守护精灵的总个数。守护精灵的总个数为A型守护精灵的个数与B型守护精灵的个数之和。

Input

第1行包含两个整数N,M,表示无向图共有N个节点,M条边。 接下来M行,第行包含4个正整数Xi,Yi,Ai,Bi,描述第i条无向边。其中Xi与Yi为该边两个端点的标号,Ai与Bi的含义如题所述。 注意数据中可能包含重边与自环。

Output

输出一行一个整数:如果小E可以成功拜访到隐士,输出小E最少需要携带的守护精灵的总个数;如果无论如何小E都无法拜访到隐士,输出“-1”(不含引号)。

HINT

2<=n<=50,000
0<=m<=100,000
1<=ai ,bi<=50,000


题目分析

先将每条边按a数量升序排序
然后依次遍历每条边

若当前边所连接两点未连通
则直接连上

否则查询这两点间b数量最大的边
与当前边比较
若大于当前边则替换

当find(1)==find(n)时更新答案


#include<iostream>
#include<vector>
#include<algorithm>
#include<queue>
#include<cstring>
#include<cstdio>
using namespace std;

int read()
{
    int f=1,x=0;
    char ss=getchar();
    while(ss<'0'||ss>'9'){if(ss=='-')f=-1;ss=getchar();}
    while(ss>='0'&&ss<='9'){x=x*10+ss-'0';ss=getchar();}
    return f*x;
}

int n,m;
struct node{int u,v,a,b;}E[300010];
int fa[300010],ch[300010][2];
int val[300010],maxn[300010]; 
int ff[300010];
int st[300010];
int lzy[300010];
int ans=1e9;

bool cmp(node x,node y)
{
    if(x.a==y.a) return x.b<y.b; 
    return x.a<y.a;
}

void update(int x)
{
    maxn[x]=x;
    maxn[x]=val[maxn[ch[x][0]]]>val[maxn[x]] ?maxn[ch[x][0]]:maxn[x];
    maxn[x]=val[maxn[ch[x][1]]]>val[maxn[x]] ?maxn[ch[x][1]]:maxn[x];
}

void push(int x)
{
    if(!lzy[x]) return;
    swap(ch[x][0],ch[x][1]);
    lzy[ch[x][0]]^=1; lzy[ch[x][1]]^=1;
    lzy[x]=0;
}

int isrt(int x)
{
    return ch[fa[x]][0]!=x&&ch[fa[x]][1]!=x; 
}

void rotate(int x)
{
    int y=fa[x],z=fa[y];
    int d=(ch[y][0]==x);
    if(!isrt(y))
    {
        if(ch[z][0]==y) ch[z][0]=x;
        else ch[z][1]=x;
    }
    fa[y]=x; fa[ch[x][d]]=y; fa[x]=z;
    ch[y][d^1]=ch[x][d]; ch[x][d]=y;
    update(y); update(x);
}

void splay(int x)
{
    int top=0; st[++top]=x;
    for(int i=x;!isrt(i);i=fa[i])
    st[++top]=fa[i];
    while(top) push(st[top--]);

    while(!isrt(x))
    {
        int y=fa[x],z=fa[y];
        if(!isrt(y))
        {
            if((ch[z][0]==y)^(ch[y][0]==x)) rotate(x);
            else rotate(y);
        }
        rotate(x);
    }
}

void access(int x)
{
    int t=0;
    while(x)
    {
        splay(x);
        ch[x][1]=t;
        update(x);
        t=x; x=fa[x];
    }
}

void mkrt(int x)
{
    access(x); splay(x);
    lzy[x]^=1;
}

void match(int x,int y)
{
    mkrt(x); fa[x]=y; 
}

void cut(int x,int y)
{
    mkrt(x);
    access(y); splay(y);
    fa[x]=ch[y][0]=0;
}

int find(int x)
{
    if(x==ff[x]) return x;
    else return ff[x]=find(ff[x]);
}

int get(int x,int y)
{
    mkrt(x);
    access(y); splay(y);
    return maxn[y];
}

void solve()
{
    for(int i=1;i<=m;++i)
    {
        int u=E[i].u,v=E[i].v;
        int fu=find(u),fv=find(v);
        if(fu!=fv)
        {
            ff[fu]=fv;
            match(u,i+n);match(v,i+n);
        }
        else if(fu==fv)
        {
            int num=get(u,v);
            if(val[num]>E[i].b)
            {
                cut(E[num-n].u,num); cut(E[num-n].v,num);
                match(u,i+n); match(v,i+n);
            }
        }
        if(find(1)==find(n))
        {
            int num=get(1,n);
            ans=min(ans,val[num]+E[i].a);
        }
    }
}

int main()
{
    n=read();m=read();
    for(int i=1;i<=m;++i)
    {
        E[i].u=read();E[i].v=read();
        E[i].a=read();E[i].b=read();
    }
    sort(E+1,E+1+m,cmp);
    for(int i=1;i<=n;++i) ff[i]=i;
    for(int i=1;i<=m;++i) val[i+n]=E[i].b,maxn[i+n]=i+n;

    solve();
    if(ans==1e9)cout<<-1;
    else cout<<ans;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值