BZOJ3209 || 洛谷P4317 花神的数论题【数位DP】

Time Limit: 10 Sec
Memory Limit: 128 MB

Description

众所周知,花神多年来凭借无边的神力狂虐各大 OJ、OI、CF、TC …… 当然也包括 CH 啦。
话说花神这天又来讲课了。课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了。
花神的题目是这样的
设 sum(i) 表示 i 的二进制表示中 1 的个数。给出一个正整数 N ,花神要问你
派(Sum(i)),也就是 sum(1)—sum(N) 的乘积。

Input

一个正整数 N。

Output

一个数,答案模 10000007 的值。

HINT

对于 100% 的数据,N≤10^15


题目分析

什么鬼数论明明就是DP
由于 N &lt; = 1 0 15 N&lt;=10^{15} N<=1015知这个范围内的数二进制下最多只有50个1
所以我们枚举1的个数 K K K,分别统计1~N内有多少个数二进制下恰好有 K K K个1
最后用快速幂累加进答案

这里的数位DP需要在二进制下进行
d p [ i ] [ j ] dp[i][j] dp[i][j]表示 当前处理到第 i i i位,且已经出现了 j j j个1的满足条件的数字个数
只需要套数位DP的板就好了

lt DP(int len,int cnt,int pre)
{
    if(len==0) return (cnt==K);
    if(!pre&&dp[len][cnt]!=-1) return dp[len][cnt];
    lt res=0,mx=pre?dig[len]:1;
    for(int i=0;i<=mx;++i)
    {
        if(cnt+(i==1)>K) continue;
        res+=DP(len-1,cnt+(i==1),pre&&i==mx);
    }
    if(!pre) dp[len][cnt]=res;
    return res;
}
 
lt solve(lt x)
{
    int len=0;
    while(x)
    {
        dig[++len]=x&1;
        x>>=1;
    }
    return DP(len,0,1);
}

完整代码

#include<iostream>
#include<cstdio>
#include<vector>
#include<queue>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long lt;
  
lt read()
{
    lt f=1,x=0;
    char ss=getchar();
    while(ss<'0'||ss>'9'){if(ss=='-')f=-1;ss=getchar();}
    while(ss>='0'&&ss<='9'){x=x*10+ss-'0';ss=getchar();}
    return f*x;
}
 
const int mod=10000007;
const int maxn=50;
lt n,K,ans=1;
lt dig[maxn],dp[maxn][maxn];
 
lt qpow(lt a,lt k,lt p)
{
    lt res=1;
    while(k>0){
        if(k&1) res=(res*a)%p;
        a=(a*a)%p; k>>=1;
    }
    return res;
}
 
lt DP(int len,int cnt,int pre)
{
    if(len==0) return (cnt==K);
    if(!pre&&dp[len][cnt]!=-1) return dp[len][cnt];
    lt res=0,mx=pre?dig[len]:1;
    for(int i=0;i<=mx;++i)
    {
        if(cnt+(i==1)>K) continue;
        res+=DP(len-1,cnt+(i==1),pre&&i==mx);
    }
    if(!pre) dp[len][cnt]=res;
    return res;
}
 
lt solve(lt x)
{
    int len=0;
    while(x)
    {
        dig[++len]=x&1;
        x>>=1;
    }
    return DP(len,0,1);
}
 
int main()
{
    n=read();
    for(int i=1;i<=50;++i)
    {
        memset(dp,-1,sizeof(dp));
        K=i; ans=(ans*qpow(i,solve(n),mod))%mod;
    }
     
    printf("%lld",ans);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值