BZOJ3437 小P的牧场【斜率优化DP】

Time Limit: 10 Sec Memory Limit: 128 MB

Description

小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制站控制的牧场是它所在的牧场一直到它西边第一个控制站的所有牧场(它西边第一个控制站所在的牧场不被控制)(如果它西边不存在控制站,那么它控制西边所有的牧场),每个牧场被控制都需要一定的花费(毕竟在控制站到牧场间修建道路是需要资源的嘛~),而且该花费等于它到控制它的控制站之间的牧场数目(不包括自身,但包括控制站所在牧场)乘上该牧场的放养量,在第i个牧场建立控制站的花费是ai,每个牧场i的放养量是bi,理所当然,小P需要总花费最小,但是小P的智商有点不够用了,所以这个最小总花费就由你来算出啦。

Input

第一行一个整数 n 表示牧场数目
第二行包括n个整数,第i个整数表示ai
第三行包括n个整数,第i个整数表示bi

Output

只有一行,包括一个整数,表示最小花费

HINT

1<=n<=1000000, 0 < a i ,bi < = 10000


题目分析
斜率优化DP–详解

一开始被卡在了 ∑ k = 1 i − j − 1 k ∗ b i − k \sum_{k=1}^{i-j-1}k*b_{i-k} k=1ij1kbik的求解
参考了dalao的博客以后豁然开朗

s u m B [ i ] = ∑ k = 1 i b [ k ] sumB[i]=\sum_{k=1}^ib[k] sumB[i]=k=1ib[k]
s u m M [ i ] = ∑ k = 1 i b [ k ] ∗ k sumM[i]=\sum_{k=1}^ib[k]*k sumM[i]=k=1ib[k]k
那么 ∑ k = 1 i − j − 1 k ∗ b i − k = i ∗ ( s u m B [ i ] − s u m B [ j ] ) − ( s u m M [ i ] − s u m M [ j ] ) \sum_{k=1}^{i-j-1}k*b_{i-k}=i*(sumB[i]-sumB[j])-(sumM[i]-sumM[j]) k=1ij1kbik=i(sumB[i]sumB[j])(sumM[i]sumM[j])

现在开始考虑dp方程,先确定 O ( n 2 ) O(n^2) O(n2)做法
d p [ i ] = d p [ j ] + a [ i ] + i ∗ ( s u m B [ i ] − s u m B [ j ] ) − ( s u m M [ i ] − s u m M [ j ] ) dp[i]=dp[j]+a[i]+i*(sumB[i]-sumB[j])-(sumM[i]-sumM[j]) dp[i]=dp[j]+a[i]+i(sumB[i]sumB[j])(sumM[i]sumM[j])

然后变形为
d p [ j ] + s u m M [ j ] = i ∗ s u m B [ j ] − i ∗ s u m B [ i ] + s u m M [ i ] − a [ i ] + d p [ i ] dp[j]+sumM[j]=i*sumB[j]-i*sumB[i]+sumM[i]-a[i]+dp[i] dp[j]+sumM[j]=isumB[j]isumB[i]+sumM[i]a[i]+dp[i]
到这里就可以令 d p [ j ] + s u m M [ j ] dp[j]+sumM[j] dp[j]+sumM[j] y y y s u m B [ j ] sumB[j] sumB[j] x x x i i i为斜率
单调队列维护凸壳即可


#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
typedef double dd;
typedef long long lt;
    
lt read()
{
    lt f=1,x=0;
    char ss=getchar();
    while(ss<'0'||ss>'9'){if(ss=='-')f=-1;ss=getchar();}
    while(ss>='0'&&ss<='9'){x=x*10+ss-'0';ss=getchar();}
    return f*x;
}
    
const int maxn=2000010;
int n;
lt ai[maxn];
lt sumB[maxn],sumM[maxn];
lt dp[maxn];
int q[maxn],ll,rr;
    
dd calc(int j1,int j2)
{
    lt ty=(dp[j2]+sumM[j2])-(dp[j1]+sumM[j1]);
    lt tx=sumB[j2]-sumB[j1];
    return (dd)ty/(dd)tx;
}
    
int main()
{
    n=read();
    for(int i=1;i<=n;++i) ai[i]=read();
    for(lt i=1;i<=n;++i) 
    {
        lt b=read();
        sumB[i]=sumB[i-1]+b; sumM[i]=sumM[i-1]+i*b;
    }
        
    ll=rr=1;
    for(int i=1;i<=n;++i)
    {
        while( ll<rr && calc(q[ll],q[ll+1])<=i ) ++ll;
        dp[i]=dp[q[ll]]-(sumM[i]-sumM[q[ll]])+i*(sumB[i]-sumB[q[ll]])+ai[i];
        while( ll<rr && calc(q[rr-1],q[rr]) >= calc(q[rr],i) ) --rr;
        q[++rr]=i;
    }
        
    printf("%lld",dp[n]);
    return 0;
}

题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值