BZOJ2154 || 洛谷P1829 [国家集训队]Crash的数字表格【莫比乌斯反演】

Time Limit: 20 Sec
Memory Limit: 259 MB

Description

今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple)。对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数。例如,LCM(6, 8) = 24。回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张NM的表格。每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j)。一个45的表格如下: 1 2 3 4 5 2 2 6 4 10 3 6 3 12 15 4 4 12 4 20 看着这个表格,Crash想到了很多可以思考的问题。不过他最想解决的问题却是一个十分简单的问题:这个表格中所有数的和是多少。当N和M很大时,Crash就束手无策了,因此他找到了聪明的你用程序帮他解决这个问题。由于最终结果可能会很大,Crash只想知道表格里所有数的和mod 20101009的值

Input

输入的第一行包含两个正整数,分别表示N和M

Output

输出一个正整数,表示表格中所有数的和mod 20101009的值

Hint

100%的数据满足N, M ≤ 10^7。


题目分析

首先题目要求的式子为
∑ i = 1 n ∑ j = 1 m i ∗ j g c d ( i , j ) \sum_{i=1}^n\sum_{j=1}^m\frac{i*j}{gcd(i,j)} i=1nj=1mgcd(i,j)ij

尝试把gcd提出来枚举

∑ d = 1 m i n ( n , m ) ∑ i = 1 n ∑ j = 1 m i ∗ j d [ g c d ( i , j ) = = d ] \sum_{d=1}^{min(n,m)}\sum_{i=1}^n\sum_{j=1}^m\frac{i*j}{d}[gcd(i,j)==d] d=1min(n,m)i=1nj=1mdij[gcd(i,j)==d]

考虑枚举 g c d ( x , y ) = 1 gcd(x,y)=1 gcd(x,y)=1,则一定有 g c d ( x ∗ d , y ∗ d ) = d gcd(x*d,y*d)=d gcd(xd,yd)=d

∑ d = 1 m i n ( n , m ) ∑ x = 1 ⌊ n d ⌋ ∑ y = 1 ⌊ m d ⌋ x d ∗ y d d [ g c d ( x , y ) = = 1 ] = ∑ d = 1 m i n ( n , m ) d ∑ x = 1 ⌊ n d ⌋ ∑ y = 1 ⌊ m d ⌋ x ∗ y [ g c d ( x , y ) = = 1 ] \sum_{d=1}^{min(n,m)}\sum_{x=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{y=1}^{\lfloor\frac{m}{d}\rfloor}\frac{xd*yd}{d}[gcd(x,y)==1]=\sum_{d=1}^{min(n,m)}d\sum_{x=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{y=1}^{\lfloor\frac{m}{d}\rfloor}x*y[gcd(x,y)==1] d=1min(n,m)x=1dny=1dmdxdyd[gcd(x,y)==1]=d=1min(n,m)dx=1dny=1dmxy[gcd(x,y)==1]

回忆莫比乌斯函数的性质 ∑ d ∣ n μ ( d ) = [ n = 1 ] \sum_{d|n}\mu(d)=[n=1] dnμ(d)=[n=1]并带入得

∑ d = 1 m i n ( n , m ) d ∑ x = 1 ⌊ n d ⌋ ∑ y = 1 ⌊ m d ⌋ x ∗ y ∑ z ∣ g c d ( x , y ) μ ( z ) = ∑ d = 1 m i n ( n , m ) d ∑ x = 1 ⌊ n d ⌋ ∑ y = 1 ⌊ m d ⌋ x ∗ y ∑ z = 1 g c d ( x , y ) μ ( z ) [ z ∣ g c d ( x , y ) ] \sum_{d=1}^{min(n,m)}d\sum_{x=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{y=1}^{\lfloor\frac{m}{d}\rfloor}x*y\sum_{z|gcd(x,y)}\mu(z)=\sum_{d=1}^{min(n,m)}d\sum_{x=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{y=1}^{\lfloor\frac{m}{d}\rfloor}x*y\sum_{z=1}^{gcd(x,y)}\mu(z)[z|gcd(x,y)] d=1min(n,m)dx=1dny=1dmxyzgcd(x,y)μ(z)=d=1min(n,m)dx=1dny=1dmxyz=1gcd(x,y)μ(z)[zgcd(x,y)]

接下来把 z z z得枚举提前
∑ d = 1 m i n ( n , m ) d ∑ z = 1 m i n ( ⌊ n d ⌋ , ⌊ m d ⌋ ) μ ( z ) ∑ x = 1 ⌊ n d ⌋ ∑ y = 1 ⌊ m d ⌋ x ∗ y ∗ [ z ∣ g c d ( x , y ) ] \sum_{d=1}^{min(n,m)}d \sum_{z=1}^{min(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor)}\mu(z) \sum_{x=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{y=1}^{\lfloor\frac{m}{d}\rfloor}x*y*[z|gcd(x,y)] d=1min(n,m)dz=1min(dn,dm)μ(z)x=1dny=1dmxy[zgcd(x,y)]

若有 z ∣ g c d ( x , y ) z|gcd(x,y) zgcd(x,y),则一定有 z ∣ x , z ∣ y z|x,z|y zx,zy
所以考虑把枚举 x , y x,y x,y变成枚举 z z z的倍数,最后把 z 2 z^2 z2提前

∑ d = 1 m i n ( n , m ) d ∑ z = 1 m i n ( ⌊ n d ⌋ , ⌊ m d ⌋ ) μ ( z ) ∑ t 1 = 1 ⌊ n d z ⌋ ∑ t 2 = 1 ⌊ m d z ⌋ z 2 t 1 t 2 = ∑ d = 1 m i n ( n , m ) d ∑ z = 1 m i n ( ⌊ n d ⌋ , ⌊ m d ⌋ ) μ ( z ) ∗ z 2 ∑ t 1 = 1 ⌊ n d z ⌋ t 1 ∑ t 2 = 1 ⌊ m d z ⌋ t 2 \sum_{d=1}^{min(n,m)}d \sum_{z=1}^{min(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor)}\mu(z) \sum_{t_1=1}^{\lfloor\frac{n}{dz}\rfloor}\sum_{t_2=1}^{\lfloor\frac{m}{dz}\rfloor}z^2t_1t_2=\sum_{d=1}^{min(n,m)}d \sum_{z=1}^{min(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor)}\mu(z)*z^2 \sum_{t_1=1}^{\lfloor\frac{n}{dz}\rfloor}t_1\sum_{t_2=1}^{\lfloor\frac{m}{dz}\rfloor}t_2 d=1min(n,m)dz=1min(dn,dm)μ(z)t1=1dznt2=1dzmz2t1t2=d=1min(n,m)dz=1min(dn,dm)μ(z)z2t1=1dznt1t2=1dzmt2

到这里可以发现 μ ( z ) ∗ z 2 \mu(z)*z^2 μ(z)z2可以 O ( n ) O(n) O(n)线性筛预处理前缀和,最后那一坨就是等差数列求和
∑ z = 1 m i n ( ⌊ n d ⌋ , ⌊ m d ⌋ ) \sum_{z=1}^{min(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor)} z=1min(dn,dm) ∑ t 1 = 1 ⌊ n d z ⌋ t 1 ∑ t 2 = 1 ⌊ m d z ⌋ t 2 \sum_{t_1=1}^{\lfloor\frac{n}{dz}\rfloor}t_1\sum_{t_2=1}^{\lfloor\frac{m}{dz}\rfloor}t_2 t1=1dznt1t2=1dzmt2显然可以整除分块处理
渐进复杂度约为 O ( n ) O(n) O(n)

(P.S. 注意减法取膜的问题)


#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<queue>
using namespace std;
typedef long long lt;
#define Sum(x) ((1ll*x*(x+1)/2)%mod)

int read()
{
    int f=1,x=0;
    char ss=getchar();
    while(ss<'0'||ss>'9'){if(ss=='-')f=-1;ss=getchar();}
    while(ss>='0'&&ss<='9'){x=x*10+ss-'0';ss=getchar();}
    return f*x;
}

const int mod=20101009;
const int maxn=1e7+10;
int miu[maxn];
int vis[maxn],prim[maxn],cnt;
lt sum[maxn];

void Miu(int n)
{
    miu[1]=1;
    for(int i=2;i<=n;++i)
    {
        if(!vis[i]){ prim[++cnt]=i; miu[i]=-1;}
        for(int j=1;j<=cnt;++j)
        {
            if(i*prim[j]>n) break;
            vis[i*prim[j]]=1;
            if(i%prim[j]==0) break;
            else miu[i*prim[j]]=-miu[i];
        }
    }
    for(int i=1;i<=n;++i) 
    sum[i]=(sum[i-1]+1ll*i*i%mod*(miu[i]+mod)%mod)%mod;
}

lt qsum(int n,int m) 
{
    lt res=0; int lim=min(n,m);
    for(int ll=1,rr;ll<=lim;ll=rr+1) 
    {
        rr=min(n/(n/ll),m/(m/ll));
        res+=1ll*((sum[rr]-sum[ll-1])%mod+mod)%mod * Sum(n/ll)%mod * Sum(m/ll)%mod;
        res%=mod;
    }
    return res;
}

lt query(int n,int m) 
{
    lt res=0; int lim=min(n,m);
    for(int ll=1,rr;ll<=lim;ll=rr+1) 
    {
        rr=min(n/(n/ll),m/(m/ll));
        res+=1ll*(rr-ll+1)*(ll+rr)/2%mod * qsum(n/ll,m/ll)%mod;
        res%=mod;
    }
    return res;
}

int main() 
{
    int n=read(),m=read(); 
    Miu(min(n,m));
    printf("%lld\n",query(n,m));
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值