时空限制 1000ms / 131MB
题目描述
想必大家都看过成龙大哥的《80天环游世界》,里面的紧张刺激的打斗场面一定给你留下了深刻的印象。现在就有这么一个80人的团伙,也想来一次环游世界。
他们打算兵分多路,游遍每一个国家。
因为他们主要分布在东方,所以他们只朝西方进军。设从东方到西方的每一个国家的编号依次为1⋯N。假若第i个人的游历路线为 P 1 , P 2 , ⋯   , P k ( 0 ≤ k ≤ N ) P_1,P_2,\cdots ,P_k(0≤k≤N) P1,P2,⋯,Pk(0≤k≤N),则 P 1 < P 2 < . . . . . . < P k P_1<P_2<......<P_k P1<P2<......<Pk
众所周知,中国相当美丽,这样在环游世界时就有很多人经过中国。我们用一个正整数Vi来描述一个国家的吸引程度, V i V_i Vi 值越大表示该国家越有吸引力,同时也表示有且仅有 V i V_i Vi个人会经过那一个国家。
为了节省时间,他们打算通过坐飞机来完成环游世界的任务。同时为了省钱,他们希望总的机票费最小。
明天就要出发了,可是有些人临阵脱逃,最终只剩下了M个人去环游世界。他们想知道最少的总费用,你能告诉他们吗?
输入格式:
第一行两个正整数N,M
第二行有N个不大于M正整数,分别表示
V
1
,
V
2
,
⋯
 
,
V
N
V_1,V_2,\cdots, V_N
V1,V2,⋯,VN
接下来有N-1行。第i行有N-i个整数,该行的第j个数表示从第i个国家到第i+j个国家的机票费(如果该值等于−1则表示这两个国家间没有通航)。
输出格式:
在第一行输出最少的总费用。
说明
在10%的数据中,M=1
在20%的数据中,1≤M≤2
在40%的数据中,1≤M≤3
在60%的数据中,1≤M≤4
在100%的数据中,1≤N≤100,1≤M≤79
保证所以输入数据中最少费用小于10^6
保证至少存在一种可行方案
题目分析
每个国家
i
i
i拆成入点和出点,由入点向出点连边,下界
V
i
V_i
Vi,上界
V
i
V_i
Vi,费用0
若国家
i
i
i到国家
j
j
j有航线,那么
i
i
i的出点向
j
j
j的入点连边,下界0,上界inf,费用为给定费用
建立虚拟源点
s
s
s,向每个入点连边,下界0,上界inf,费用0
每个出点向虚拟汇点
t
t
t连边,下界0,上界inf,费用0
另外
t
t
t还要向
t
′
t'
t′连边,下界0,上界m,费用0
按照有上下界网络流的套路构造网络
因为要求的是可行方案中费用最小的,所以直接跑
s
s
ss
ss(超源)到
t
t
tt
tt(超汇)的最小费用最大流即可
这样得到的一定是可行流中费用最小的
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<queue>
using namespace std;
typedef long long lt;
int read()
{
int f=1,x=0;
char ss=getchar();
while(ss<'0'||ss>'9'){if(ss=='-')f=-1;ss=getchar();}
while(ss>='0'&&ss<='9'){x=x*10+ss-'0';ss=getchar();}
return f*x;
}
const int inf=1128481603;
const int maxn=100010;
int n,m;
struct node{int v,f,c,nxt;}E[maxn<<1];
int head[maxn],tot=1;
int dis[maxn],incf[maxn];
int vis[maxn],pre[maxn];
int deg[maxn];
void add(int u,int v,int f,int c)
{
E[++tot].nxt=head[u];
E[tot].v=v; E[tot].f=f; E[tot].c=c;
head[u]=tot;
}
bool bfs(int s,int t)
{
memset(dis,67,sizeof(dis)); dis[s]=0;
queue<int> q; q.push(s); incf[s]=inf;
while(!q.empty())
{
int u=q.front();
q.pop(); vis[u]=0;
for(int i=head[u];i;i=E[i].nxt)
{
int v=E[i].v;
if(E[i].f&&dis[v]>dis[u]+E[i].c)
{
dis[v]=dis[u]+E[i].c;
incf[v]=min(incf[u],E[i].f); pre[v]=i;
if(!vis[v]) q.push(v),vis[v]=1;
}
}
}
return dis[t]!=inf;
}
int dfs(int s,int t)
{
int u=t;
while(u!=s)
{
int i=pre[u];
E[i].f-=incf[t]; E[i^1].f+=incf[t];
u=E[i^1].v;
}
return incf[t]*dis[t];
}
int dicnic(int s,int t)
{
int fee=0;
while(bfs(s,t)) fee+=dfs(s,t);
return fee;
}
int main()
{
n=read();m=read(); int s=0,t=n*2+1;
for(int i=1;i<=n;++i)
{
int f=read();
add(i,i+n,0,0); add(i+n,i,0,0);
add(s,i,inf,0); add(i,s,0,0);
add(i+n,t,inf,0); add(t,i+n,0,0);
deg[i]-=f; deg[i+n]+=f;
}
for(int i=1;i<n;++i)
for(int j=1;j<=n-i;++j)
{
int v=read();
if(v==-1) continue;
add(i+n,i+j,inf,v); add(i+j,i+n,0,-v);
}
add(t,t+1,m,0); add(t+1,t,0,0); t++;
add(t,s,inf,0); add(s,t,0,0);
int ss=n*2+3,tt=ss+1;
for(int i=1;i<=n*2+1;++i)
{
if(deg[i]>0) add(ss,i,deg[i],0),add(i,ss,0,0);
else if(deg[i]<0) add(i,tt,-deg[i],0),add(tt,i,0,0);
}
//dicnic(ss,tt);
printf("%d",dicnic(ss,tt));
return 0;
}