BZOJ3143 || 洛谷P3232 [HNOI2013]游走【期望+高斯消元】

Time Limit: 10 Sec
Memory Limit: 128 MB

Description

一个无向连通图,顶点从1编号到N,边从1编号到M。
小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数。当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和。
现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小。

Input

第一行是正整数N和M,分别表示该图的顶点数 和边数,接下来M行每行是整数u,v(1≤u,v≤N),表示顶点u与顶点v之间存在一条边。 输入保证30%的数据满足N≤10,100%的数据满足2≤N≤500且是一个无向简单连通图。

Output

仅包含一个实数,表示最小的期望值,保留3位小数


题目分析

e i e_i ei为第 i i i条边的期望经过次数
如果我们能求出这个值,那么只要把边按期望经过次数排序,期望次数小的对应大的编号即可

假如第 i i i条边两个端点为 u , v u,v u,v,那么有 e i = x u d e g [ u ] + x v d e g [ v ] e_i=\frac{x_u}{deg[u]}+\frac{x_v}{deg[v]} ei=deg[u]xu+deg[v]xv
其中 x i x_i xi为第 i i i个点的期望经过次数,deg[u]表示有多少条边结点u相连,于是问题转化为求 x i x_i xi

到这里已经可以直接列出方程
x u = ( ∑ e d g e ( u , v ) , v ! = n x v ∗ 1 d e g [ v ] ) + [ u = = 1 ] x_u=(\sum_{edge(u,v),v!=n}x_v*\frac{1}{deg[v]})+[u==1] xu=(edge(u,v),v!=nxvdeg[v]1)+[u==1]

这个方程有两个需要注意的地方

  • 因为1是起点,所以它的期望是原期望+1(即方程中[u==1])
  • 因为到达点n不再游走,所以有v!=n的判断,同理 x n x_n xn是不需要求的

高斯消元求解 x i x_i xi后根据上述思路反推回去即可

#include<iostream>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstring>
#include<cstdio>
#include<bitset>
using namespace std;
typedef long long lt;
typedef double dd;

int read()
{
    int f=1,x=0;
    char ss=getchar();
    while(ss<'0'||ss>'9'){if(ss=='-')f=-1;ss=getchar();}
    while(ss>='0'&&ss<='9'){x=x*10+ss-'0';ss=getchar();}
    return f*x;
}

const int maxn=1010;
dd a[maxn][maxn],ans[maxn],c[maxn];
struct node{int v,nxt;}E[maxn*maxn];
int head[maxn],tot;
struct edge{int u,v;}rem[maxn*maxn];
int deg[maxn];

void add(int u,int v)
{
    E[++tot].nxt=head[u];
    E[tot].v=v;
    head[u]=tot;
}

void gauss(int n)
{
    for(int i=1;i<=n;++i)
    {
        int r=i;
        for(int j=i+1;j<=n;++j)
        if(fabs(a[j][i])>fabs(a[r][i])) r=j;
        
        if(r!=i) swap(a[r],a[i]);
        
        dd f=a[i][i];
        for(int j=1;j<=n+1;++j) a[i][j]/=f;
        for(int j=1;j<=n;++j)
        if(i!=j){
            f=a[j][i];
            for(int k=1;k<=n+1;++k)
            a[j][k]-=f*a[i][k];
        }
    }
    
    for(int i=n;i>=1;--i)
    {
        ans[i]=a[i][n+1];
        for(int j=i+1;j<=n;++j)
        ans[i]-=a[i][j]*ans[j];
    }
}

int main()
{
    int n=read(),m=read();
    for(int i=1;i<=m;++i)
    {
    	int u=read(),v=read();
    	rem[i].u=u; rem[i].v=v;
    	add(u,v); add(v,u);
    	deg[u]++; deg[v]++;
    }
    
    a[1][n]=1;//点1的期望+1
    for(int i=2;i<n;++i) a[i][n]=0;
    //因为n点期望不需要计算,所以矩阵总共n-1行,第n列为常数列
    for(int u=1;u<n;++u)
    {
        a[u][u]=1.0;
        for(int i=head[u];i;i=E[i].nxt)
        {
            int v=E[i].v; if(v==n) continue;
            a[u][v]=-1.0/(1.0*deg[v]);
        }
    }
    
    gauss(n-1);
    for(int i=1;i<=m;++i)
    {
        int u=rem[i].u,v=rem[i].v;
        if(u!=n) c[i]+=ans[u]/(dd)deg[u];
        if(v!=n) c[i]+=ans[v]/(dd)deg[v];
    }
    
    dd res=0;
    sort(c+1,c+1+m);
    for(int i=1;i<=m;++i)
    res+=1.0*(m-i+1)*c[i];
    
    printf("%.3lf",res);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值