
数据库
文章平均质量分 94
数据库
MadeInSQL
创新一是种生活方式、挑战是一种生活状态
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
图数据库neo4j安装与入门
Neo4j是一款高性能的NoSQL图形数据库,由Neo Technology公司于2007年首次发布。它将结构化数据存储在网络上而不是传统的表中,采用了完全不同的数据存储和查询方式。与关系型数据库不同,Neo4j使用节点(nodes)、关系(relationships)和属性(properties)来表示和存储数据,这种设计使其特别适合处理复杂的关系网络。原创 2025-08-01 13:19:08 · 760 阅读 · 0 评论 -
向量数据库vearch安装与入门
Vearch 是一个基于云原生的开源高性能向量搜索引擎,由京东数字科技团队于2019年开发并持续维护。该系统采用分布式架构设计,专门针对海量向量数据的存储和检索场景进行了深度优化。在技术实现上,Vearch 核心采用C++编写,通过Raft协议保证数据一致性,支持水平扩展和多副本机制。在性能表现上,Vearch 在标准测试集SIFT1B上,能在毫秒级别完成十亿级向量的检索,召回率可达95%以上。系统还支持混合查询,可以同时处理结构化数据和向量数据的联合检索需求。原创 2025-08-01 13:14:29 · 543 阅读 · 0 评论 -
向量数据库vespa安装与入门
Vespa是Yahoo开发并开源的一个企业级高性能向量搜索引擎和大数据处理平台,专为大规模机器学习应用场景设计。它于2017年正式开源,目前已被广泛应用于推荐系统、广告投放、图像搜索等AI相关领域。作为一个综合性的数据处理平台,Vespa创新性地将三种核心能力融为一体:Vespa的主要技术特性包括:多维度相似度计算能力:弹性分布式架构:实时数据处理能力:混合搜索功能:内置机器学习推理:灵活的部署方案:典型应用场景示例:Vespa通过其独特的技术架构,在保持高吞吐量的同时,能实现毫秒级的查询延迟,使其成为构建原创 2025-08-01 13:11:54 · 810 阅读 · 0 评论 -
向量数据库vald安装与入门
Vald 是一个开源的、云原生的分布式向量搜索引擎,专为大规模向量相似性搜索而设计。它采用 Go 语言编写,支持高效的最近邻搜索(Approximate Nearest Neighbor Search, ANNS),广泛应用于推荐系统、图像搜索、自然语言处理等领域。原创 2025-08-01 13:09:13 · 883 阅读 · 0 评论 -
向量数据库qdrant安装与入门
Qdrant是一个开源的向量相似度搜索引擎和向量数据库,专为高效存储和检索高维向量数据而设计。它基于Rust语言开发,提供了高性能的向量搜索能力,常用于推荐系统、图像检索、自然语言处理等AI应用场景。Qdrant不仅支持REST API和gRPC接口,还提供了多种语言的客户端SDK,包括Python、Go、Java、Rust等,方便开发者快速集成到现有系统中。主要特点:采用先进的近似最近邻(ANN)算法,支持毫秒级的向量检索优化了索引结构和查询处理流程,单节点可处理每秒数千次查询。原创 2025-08-01 13:04:43 · 729 阅读 · 0 评论 -
向量数据库weaviate安装与入门
Weaviate是一个开源的向量搜索引擎,它允许用户存储数据对象和向量嵌入,并基于语义相似性搜索数据。Weaviate采用现代架构设计,特别适合处理非结构化数据和构建AI驱动的应用程序。原创 2025-08-01 11:42:51 · 287 阅读 · 0 评论 -
向量数据库pinecone安装与入门
Pinecone是一个全托管的云原生向量数据库服务,专为现代机器学习应用场景设计。作为向量搜索领域的领先解决方案,它能够高效地存储和检索高维向量数据(通常维度在100-1000之间),特别适合处理由深度学习模型生成的嵌入向量(embeddings)。原创 2025-08-01 11:40:01 · 851 阅读 · 0 评论 -
向量数据库milvus安装与入门
Milvus是一个开源的分布式向量数据库,专为AI应用和向量相似性搜索而设计。它采用云原生架构,具有高可用性、弹性扩展和易于部署的特点。Milvus能够高效地存储、索引和管理数十亿个高维向量(通常为128-2048维),并提供毫秒级的低延迟查询响应。在实际应用中,Milvus已被阿里云、腾讯云等云服务商采用,并在多个行业场景中取得显著效果,日均处理查询量可达数十亿次。其2.0版本进一步优化了性能和稳定性,使其成为构建AI应用时向量搜索的首选解决方案。原创 2025-08-01 11:37:23 · 582 阅读 · 0 评论 -
向量数据库faiss安装与入门
FAISS(Facebook AI Similarity Search)是Facebook AI Research团队开发的一款高效相似性搜索和密集向量聚类的开源库。它采用C++编写,提供了Python接口,专门针对大规模向量搜索场景进行了深度优化。FAISS的核心优势在于其创新的索引结构和并行计算能力,能够显著提升高维向量相似度计算的效率。原创 2025-08-01 11:33:18 · 538 阅读 · 0 评论 -
向量数据库chroma安装与入门
Chroma是一款开源的向量数据库,专门为AI应用设计,可以高效存储和查询嵌入向量(embeddings)。它提供了简单的API接口,支持语义搜索、推荐系统等多种AI应用场景。原创 2025-08-01 11:27:14 · 970 阅读 · 0 评论 -
InnoDB索引页结构详解
包括:页在B+树中的层级(PAGE_LEVEL)、页类型(PAGE_INDEX/PAGE_UNDO_LOG等)、上一个页和下一个页的指针(双向链表结构)、页内记录数等。InnoDB默认使用16KB大小的页(Page)作为基本存储单位,这是经过实践验证的最佳平衡点,既能保证较高的存储密度,又能避免频繁的页分裂操作。页尾(Page Trailer):如同建筑的消防通道,固定8字节,存储页面的校验和(Checksum),用于崩溃恢复时验证页的完整性。(26字节):建筑的基础和屋顶。原创 2025-07-03 10:00:00 · 661 阅读 · 0 评论 -
深入解析MySQL Join算法原理与性能优化
嵌套循环连接是最基本的Join算法,工作原理类似于编程中的嵌套循环。外层循环遍历驱动表(通常是小表)的每一行,内层循环在被驱动表中查找匹配的行。时间复杂度O(N+M)适合大表等值Join无需索引支持仅MySQL 8.0+支持内存消耗较大仅支持等值连接这是最原始的Join实现方式,核心思路是外层表一条条取出数据,与内层表逐条比较。[外表] → 每行取出↓[内表] → 全表遍历或借助索引定位。原创 2025-07-03 09:52:54 · 617 阅读 · 0 评论 -
正则表达式(REGEXP)与通配符(LIKE)的详细对比
基本原则简单匹配使用LIKE复杂模式使用REGEXP考虑查询性能影响性能最佳实践对频繁搜索的列创建适当索引避免在大型表上使用复杂的正则表达式考虑将正则匹配放在应用层处理可读性建议为复杂的正则表达式添加注释考虑将常用模式存储为视图或函数在团队中建立一致的编码标准测试策略测试正则表达式与各种输入数据的匹配情况比较不同方法的性能表现监控生产环境中的查询性能通过合理选择和使用REGEXP与LIKE,可以高效地处理各种字符串匹配需求,同时保持查询性能和代码可维护性。原创 2025-07-03 09:48:38 · 1024 阅读 · 0 评论 -
ShardingSphere
Override// 实现复杂的分片逻辑。原创 2025-07-02 10:36:14 · 748 阅读 · 0 评论 -
MySQL索引
1.2 索引的作用 索引可以提高数据库的性能,而且索引不用加内存,不用改程序,不用调sql,只需要执行正确的创建索引语句,就可以很方便的帮助我们在大量的数据中进行查找工作:其本质就是通过特定的数据结果对数据库中的数据进行管理,主要是通过B+树结构实现高效的数据检索。1.3 索引的局限 没有什么东西是百利而无一弊的,索引虽然可以提高我们的查询速度,但是需要付出以下代价:但对于拥有海量数据的数据库(如超过百万行的表),索引的创建仍是很有必要的,其带来的查询性能提升远大于维护成本。2.1 MySQL与磁盘交互基本原创 2025-07-01 17:20:51 · 718 阅读 · 0 评论 -
优化数据库性能以减少告警
优化数据库性能以减少 Zabbix 告警的核心在于 ,通过 四方面协同推进。原创 2025-06-24 08:24:20 · 757 阅读 · 0 评论 -
嵌入式数据库
嵌入式数据库(Embedded Database)指无需独立服务器进程、直接集成于应用程序的轻量级数据库系统,其核心设计目标是。评估嵌入式数据库性能需结合硬件特性、应用场景及数据模型,通过量化指标与压力测试验证核心能力。通过以上方法,可全面评估嵌入式数据库在目标场景下的性能表现,并为优化提供数据支撑。,适用于移动端、物联网设备、桌面软件等资源受限环境。三个指标,避免盲目追求功能丰富性而牺牲核心性能。:通过PoC测试验证实际场景性能,重点关注。原创 2025-06-23 19:47:07 · 735 阅读 · 0 评论 -
内存数据库
内存数据库(In-Memory Database, IMDB)通过将数据常驻内存实现超低延迟访问,是实时分析、高频交易等场景的核心技术。以下从技术特性、选型维度、主流方案对比三方面展开分析,帮助用户快速定位适配方案。原创 2025-06-23 19:42:37 · 824 阅读 · 0 评论 -
SAP HANA数据库
SAP HANA是一款高性能内存计算数据库,采用列式存储优化分析查询,同时支持行式存储满足事务处理需求。其核心技术包括内存计算、并行处理、高效压缩和实时数据处理能力,可实现秒级响应海量数据查询。系统架构由NameServer、IndexServer等核心组件协同工作,提供高可用性和灾难恢复功能。HANA支持多种数据类型,涵盖数字、字符、日期及二进制等,但与其他数据库存在数据类型转换和SQL语法差异。实际应用中可能遇到CPU过高、内存瓶颈等性能问题。兼容性方面,仅支持特定Linux系统,需认证硬件配置,并与S原创 2025-06-23 19:37:12 · 832 阅读 · 0 评论 -
低代码+数据中台融合产品的技术选型(前后端开源项目)
数据中台与低代码平台的深度融合正加速企业数字化转型。数据中台整合企业分散数据资源,打破信息孤岛,为低代码开发提供统一数据底座;低代码平台则通过可视化组件、逻辑编排和AI辅助,让业务人员也能快速构建应用。这种"底座+引擎"的架构模式,既满足敏捷开发需求,又支撑复杂业务扩展。前端可参考Amis、Appsmith等开源框架实现拖拽式开发,后端需重点解决动态数据源接入和元数据驱动开发问题,AnyLine、Drools等工具能有效支持异构数据源整合和复杂业务逻辑处理。该模式显著降低开发门槛,同时保原创 2025-06-19 23:30:31 · 985 阅读 · 0 评论 -
自定义 Flink SQL 函数
FlinkSQL自定义函数开发指南 本文详细介绍了FlinkSQL中三种自定义函数的实现方法:1)标量函数(单行输入输出单值),用于数据清洗和转换;2)聚合函数(多行输入输出单值),用于统计分析;3)表函数(单行输入输出多行),用于数据拆分。指南包含每类函数的典型应用场景、实现步骤、增强代码示例和复杂使用案例,并提供了函数注册管理、性能优化、测试调试等高级技巧。通过本指南,开发者可掌握扩展Flink功能的核心方法,构建高效的数据处理解决方案。原创 2025-06-16 11:00:39 · 1006 阅读 · 0 评论 -
Flink SQL内置函数
FlinkSQL内置函数全解析:150字摘要 FlinkSQL提供全面的内置函数库,涵盖算术运算(加减乘除、幂/对数/指数运算)、字符串处理(拼接/替换/截取)、时间函数(日期转换/获取当前时间)、聚合统计(计数/求和/标准差)以及条件逻辑(CASE WHEN/COALESCE)。特别支持JSON数据处理和类型转换,包含GET_JSON_OBJECT等专用函数。这些函数可直接嵌入SQL语句,满足数据转换、计算分析和条件判断等场景需求,如ROUND实现财务精确计算,TRIM处理数据清洗,CAST完成类型强制转原创 2025-06-16 10:58:11 · 685 阅读 · 0 评论 -
Flink Table API & SQL 数据类型
Flink Table API 和 SQL 提供丰富的数据类型支持,包括内置类型(基本类型、复合类型、时间类型)和用户自定义类型。内置类型遵循 SQL 标准并与 Java/Scala 兼容,支持数值、字符串、二进制、时间等基本类型,以及数组、映射、行等复合类型。Flink 特别强化了对时间语义的支持(事件时间、处理时间)和流式窗口计算(滚动、滑动、会话窗口)。相比标准 SQL,Flink SQL 扩展了动态表模型、增量计算、流式数据源连接和容错机制,更适合实时计算场景。使用时需注意类型推断、连接器兼容性和性原创 2025-06-16 10:52:36 · 766 阅读 · 0 评论 -
AnyLine在大模型数据分析-NLP2SQL环节实现“语义理解”与“数据库执行”解耦
通过将自然语言到SQL的转换过程拆分为语义解析层和执行优化层,一方面使大模型专注于语义理解而无需考虑具体数据库方言差异,显著提升NLP2SQL的准确率和泛化能力;另一方面允许执行引擎根据实际数据库类型(如MySQL/Oracle)进行针对性优化,既保证了语义理解的普适性又实现了执行效率最大化。这种架构设计还使得系统可以独立升级语义模型或执行引擎,大幅提高了技术迭代的灵活性。原创 2025-06-16 09:35:27 · 2403 阅读 · 0 评论 -
在构建基于大模型(如LLM、生成式AI)与数据库的混合系统核心瓶颈:数据格式不兼容和处理范式差异
摘要:RAG(检索增强生成)技术通过结合外部知识检索与大模型生成,显著提升了AI回答的准确性。其核心机制包括减少模型幻觉、适配领域知识和增强上下文关联性。关键技术涉及向量数据库检索、动态提示词工程和反馈循环优化。实验数据显示,RAG在事实准确性、专业性和长尾问题覆盖上比纯模型生成提升40%-80%,同时降低幻觉率。尽管存在检索质量依赖数据源等局限,但通过多源融合、置信度阈值等策略可有效缓解。未来发展方向包括端到端优化、多模态检索和自主进化系统,RAG有望成为企业AI应用标配架构。原创 2025-06-14 11:57:53 · 974 阅读 · 0 评论 -
Flink入门
Flink作为领先的开源流批一体计算框架,其核心优势包括:统一的流批处理引擎、毫秒级低延迟、精准一次语义保障、完善的状态管理以及事件时间处理能力。相比Spark Streaming和Storm,Flink在延迟、状态管理和容错方面表现更出色。典型应用场景涵盖实时数仓、复杂事件处理和机器学习特征工程等。随着云原生和AI能力增强,Flink正朝着实时湖仓一体和智能化方向发展。活跃的社区生态和丰富的企业级扩展使其成为大数据实时处理的首选方案。原创 2025-06-13 14:40:17 · 739 阅读 · 0 评论 -
HBase MOB(Medium Object Storage)
HBaseMOB优化中等对象存储方案 摘要:HBaseMOB是针对100KB-10MB中等对象的存储优化方案,通过三大核心机制实现性能提升: 存储路径分离:主表存储元数据引用,实际对象存入HDFS专用目录 压缩策略优化:按天/周合并文件,降低HDFS元数据压力 缓存机制:LRU缓存减少IO,提升高频访问效率 典型应用场景包括电商图片库(500KB-5MB)、日志文档存储及IoT传感器数据。通过hbase-site.xml配置启用,需权衡存储效率与读取延迟,最适合读多写少的中等对象场景。与HDFS协同使用时需原创 2025-06-13 13:53:21 · 685 阅读 · 0 评论 -
Dgraph 分布式图数据库构建知识图谱
Dgraph是一款开源分布式图数据库,专为大规模知识图谱设计,具备原生分布式架构、GraphQL-like查询语言和强一致性特性。其技术优势包括: 原生图模型:采用属性图模型,支持高效节点-边存储,避免关系型数据库的JOIN开销; 弹性扩展:基于Range分片和Raft协议,实现PB级数据线性扩展; 知识图谱专有能力:支持实时路径探索、动态模式演化和混合事务分析; 性能优势:在千亿边规模下保持毫秒级响应,优于Neo4j和JanusGraph等竞品。 典型应用场景包括智能客服知识库、金融反欺诈系统等需要实时更原创 2025-06-13 13:46:45 · 1037 阅读 · 0 评论 -
Confluence Atlassian Search
Confluence搜索功能是Atlassian生态中企业级知识管理的核心工具,提供全局跨空间检索、智能排序、附件内容索引等能力,支持权限控制、模糊匹配等特性。其典型应用场景包括知识复用、合规审计和跨团队协作,但存在语义理解不足、多语言支持有限等局限。优化建议包括建立标签体系、内容模板化和定期维护。性能优化可从索引效率、内容结构、硬件配置和用户行为四个维度入手,如启用增量索引、权限收敛和搜索语法培训。不同规模团队应采取分层治理策略,中小团队优先优化索引,大型企业建议升级至DataCenter版本。原创 2025-06-13 13:40:06 · 880 阅读 · 0 评论 -
Microsoft Graph + SharePoint
Microsoft Graph与SharePoint集成可显著提升企业协作效率。通过统一API访问SharePoint数据,简化开发流程,支持跨平台协作(如Teams、Outlook),并提供智能搜索和个性化推荐功能。集成方案包括:1)统一身份验证确保安全性;2)利用Graph API实现高效内容管理;3)结合数据分析优化决策。该方案适用于文档协作、团队沟通等场景,具有开发简便、性能优化等优势,助力企业数字化转型。原创 2025-06-13 13:37:23 · 825 阅读 · 0 评论 -
反向图像搜索 以图搜图
以图搜图技术通过提取图像的颜色、纹理、形状等特征,利用哈希编码和相似度匹配算法在海量数据库中快速定位相似图片。核心流程包括图像预处理、特征提取(传统算法或深度学习)、近似最近邻搜索和结果排序。主流工具如Google图片搜索、百度识图、淘宝拍立淘等,适用于溯源、版权保护、电商购物等场景。优化搜索效果需注意图片质量、工具选择和搜索策略。随着多模态技术的发展,未来将更强调语义理解与跨模态搜索能力。原创 2025-06-12 15:26:51 · 941 阅读 · 0 评论 -
大模型与数据库的技术挑战 数据格式与处理差异
大模型与数据库的协同面临数据格式差异、实时性冲突和资源争夺三大挑战。结构化数据库与多模态大模型在数据结构、处理模式和规模要求上存在本质矛盾。解决方案包括:1)采用向量数据库和混合数据模型实现格式适配;2)分层架构处理冷热数据,异步调用降低延迟;3)存储分离和计算卸载优化资源分配。未来趋势将向AI原生数据库发展,实现SQL与模型推理的无缝集成。数据标准化是协同基础,需通过结构化映射、半结构化约束、非结构化提取和多模态对齐等方法实现。建议企业分阶段实施,优先核心业务场景,平衡灵活性与一致性。原创 2025-06-12 15:18:09 · 619 阅读 · 0 评论 -
机器学习(ML)和大型语言模型(LLM)可观测性框架 Evidently AI
EvidentlyAI是一款开源机器学习可观测性框架,专为AI系统全生命周期管理而设计。该工具提供三大核心功能:数据质量检查(缺失值/异常值检测)、模型性能评估(支持分类/回归/生成任务)、实时监控与漂移检测,覆盖从实验到生产的全流程。其优势在于模块化设计、100+内置指标和灵活的Python接口,适用于表格/文本/嵌入等多种数据类型。关键应用场景包括模型验证、生产监控和合规分析。使用注意事项涵盖数据预处理、指标选择、监控频率优化及合规风险管理,建议结合业务需求动态调整阈值并实施分级报警策略。通过规范使用,原创 2025-06-12 13:51:51 · 1077 阅读 · 0 评论 -
集成AI工具链到数据管道中
摘要:AI工具链与数据管道集成可显著提升数据处理智能化水平,实现全流程自动化。核心目标包括提升效率(自动化数据清洗)、增强质量(异常检测)和驱动价值(实时决策)。关键步骤涵盖业务场景定义、工具链选型(如NLP/CV模型)、模块化架构设计及性能优化。典型应用包括智能日志分析、实时图像质检和推荐系统。评估需综合技术性能(延迟/准确率)、业务价值(转化率提升)和成本效益(ROI),建议采用A/B测试和持续监控实现闭环优化。该方案可在3-6个月内使自动化率达80%以上,推理延迟降至毫秒级。原创 2025-06-12 13:47:55 · 750 阅读 · 0 评论 -
大模型与数据库协同的技术挑战深入剖析与应对策略
大模型与数据库协同面临三大挑战:1)数据格式差异,需通过ETL工具、混合存储架构实现结构化与非结构化数据融合;2)安全隐私问题,需采用数据脱敏、同态加密和联邦学习等技术保障合规;3)计算资源竞争,可通过容器化调度、模型压缩和弹性云架构优化成本。构建智能数据管道是提升协同效率的关键,需遵循模块化、自动化、实时性设计原则,结合AI辅助决策实现端到端的数据处理优化。未来应重点关注隐私保护大模型和资源弹性调度技术的发展。原创 2025-06-12 13:43:51 · 1118 阅读 · 0 评论 -
数据分析与决策支持中大模型的应用剖析
构建实时推荐系统需在算法精度、工程性能、业务理解三方面形成闭环。建议采用“小步快跑”策略:先实现分钟级响应的准实时系统,再逐步优化至毫秒级;优先解决核心场景(如首页推荐),再扩展至全链路。最终目标是通过实时数据闭环,实现用户体验与商业价值的双重提升。原创 2025-06-12 13:40:52 · 885 阅读 · 0 评论 -
智能问答与知识库:RAG与智能客服在数据库运维中的应用详解
摘要:检索增强生成(RAG)与智能客服协同应用于数据库运维,通过动态知识库检索和自然语言处理技术提升效率。RAG解决大模型知识滞后问题,融合本地运维文档(如故障记录、技术白皮书)进行语义检索;智能客服实现意图识别与个性化推荐。典型场景包括复杂故障诊断(如PostgreSQL性能优化)和合规性查询(如GDPR数据存储)。实施效果显示首问解决率提升至85%,响应时间缩短至2.3分钟。建议采用MVP策略,从高频问题切入,建立知识生命周期管理,并持续优化检索算法与用户反馈机制。(149字)原创 2025-06-12 13:38:23 · 752 阅读 · 0 评论 -
大模型赋能数据库智能化的核心价值与实现路径
数据库智能化成为企业数字化转型的关键,大模型通过自然语言交互(NL2SQL)和智能运维两大能力显著提升效率。自然语言交互降低技术门槛,使业务人员可直接用自然语言查询数据,实现数据民主化;智能运维通过负载预测、故障自愈等功能优化性能,减少70%故障恢复时间并降低30%-50%硬件成本。尽管面临准确性、安全等挑战,但未来趋势将向多模态交互、自适应优化方向发展。大模型将数据库从技术工具升级为业务赋能平台,助力企业释放数据价值,推动数字化转型。原创 2025-06-12 13:32:34 · 1074 阅读 · 0 评论 -
大模型训练的数据基础设施解决方案
大模型训练的数据基础设施解决方案 摘要:大模型训练依赖多模态数据存储与管理,需要构建完整的数据基础设施。本文提出分层次解决方案:1)数据存储层采用混合架构,关系型数据库处理结构化数据,图数据库管理关联关系,对象存储保存非结构化数据,向量数据库支持语义检索;2)数据管理层通过索引优化、ACID事务和安全机制确保数据质量,采用分片、缓存和流式处理提升性能;3)针对数据延迟、存储成本等挑战,提出混合索引、冷热分层和联邦学习等优化方案。未来发展方向包括AI原生数据库和隐私计算技术的深度集成,以支持企业级AI应用规模原创 2025-06-12 13:30:09 · 586 阅读 · 0 评论 -
Seata 全局事务无法回滚解决方案
在 Seata 中,全局事务的回滚通常由事务管理器(TM)根据分支事务的执行结果自动触发。但在某些异常场景(如服务宕机、网络分区、业务代码未抛出预期异常)下,可能需要手动触发全局事务回滚。原创 2025-06-10 10:39:32 · 1000 阅读 · 0 评论