莫比乌斯
silentsaber~
晨意微寒秋渐深,侧畔无事俏佳人
展开
-
莫比乌斯3题小结 hdu4746,1695 && poj2154
我们约定,[x]表示x取下整 hdu4746: n m 求∑ ∑ f(gcd(a,b)) i=1j=1 min(n,m) min(n/d,m/d) 我们可以看成是:∑ ∑ u(t)* [n/dt]*[m/dt] 其中d的因子个数原创 2016-03-29 17:21:23 · 438 阅读 · 0 评论 -
bzoj2301 莫比乌斯函数
http://www.lydsy.com/JudgeOnline/problem.php?id=2301 其实就是求: b d ∑ ∑ [gcd(x,y)==k] x=a y=c 然后: b d ∑ ∑ gcd(x,y)==k x=a y=c a b 令f[a][b]= ∑ ∑ gcd(x,y)=k原创 2016-03-28 08:54:44 · 450 阅读 · 0 评论 -
bzoj2820&&YY的GCD
马丹,又是一道权限题。 问我怎么搞到题面: vjudge:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37167 HOME PROBLEM STATUS CONTEST Add ContestStatistic LOGOUT nikelong UPDATE原创 2016-03-28 17:35:22 · 550 阅读 · 0 评论 -
bzoj4407于神之怒
看到好多大神留下的题解能看得懂,但是对于那个线性筛我表示我是蒟蒻我不会QAQ~ 于是我决定来水一发(顺便留下这道权限题,什么时候有权限了再去交一(交易)发) 目前找了个过了的代码对拍发现并无错误&& 测试时间大致和那份程序差不多(应该能过吧~~) 题意: n m 求 ∑ ∑ gcd(i,j)^k mod 1e9+7原创 2016-03-29 09:20:07 · 655 阅读 · 1 评论