FCC单晶塑性abaqus-vumat

2 篇文章 4 订阅
1 篇文章 3 订阅
该博客详细介绍了如何使用ABAQUS的UMAT子程序构建单晶塑性的数学模型。内容涵盖了弹性各向同性、12个滑移系的处理、旋转、率相关的滑移硬化本构关系,以及求解12个滑移量的步骤。此外,还涉及了材料参数设置和状态变量的更新,包括滑移面和滑移方向的欧拉角转换、滑移系强度和滑移率的更新。
摘要由CSDN通过智能技术生成

以黄永刚老师的umat文章为基础,构建单晶塑性的vumat。本文是之前“单晶塑性abaqus-umat 自学”的后续,大量引用前文已推导出的结论,用(umat)代指上文。求解过程针对FCC。

0. 整体思路

先从最简单的入手:1) 弹性各向同性;2)选用向前梯度插值,先不要Newton迭代法求解;3) 滑移只考虑Schmid准则;4) 求解方程不是通过LUP分解和反向代入法,而是采用求逆矩阵的方式(逆矩阵求解方法见上一篇文章)。求逆矩阵的方法写起来相对简洁,但计算量大。


1. 弹性各向同性

弹性采用各向同性,且分析过程中将体积变化和畸变分开考虑,动态分析中可根据状态方程(EOS)单独给出P-V关系。

体变: Δ σ V = K Δ ε v (1.1a) \Delta\sigma_V=K\Delta\varepsilon_v\tag{1.1a} ΔσV=KΔεv(1.1a)

等待偏应力更新之后,再在主应力上叠加体应力
σ i = σ i + Δ σ V i = 1 , 2 , 3 (1.1b) \sigma_i=\sigma_i+\Delta\sigma_V\quad i=1,2,3\tag{1.1b} σi=σi+ΔσVi=1,2,3(1.1b)

客观应力率:(后续推导中不特意说明就是偏应力和偏应变)
σ ∇ ∗ = L : D ∗ (1.2a) \overset{\nabla}{\bm{\sigma}}^*=\bm{L:D^*}\tag{1.2a} σ=L:D(1.2a)

σ ˙ − Ω ∗ ⋅ σ + σ ⋅ Ω ∗ = L : D ∗ (1.2b) \bm{ \dot\sigma-\Omega^*\cdot\sigma+\sigma\cdot\Omega^*}=\bm{L:D^*}\tag{1.2b} σ˙Ωσ+σΩ=L:D(1.2b)

方程两边同乘以 Δ t \Delta t Δt
Δ σ − Ω ∗ ⋅ σ Δ t + σ ⋅ Ω ∗ Δ t = L : Δ ε ∗ (1.2c) \bm{ \Delta\sigma-\Omega^*\cdot\sigma\Delta t+\sigma\cdot\Omega^*\Delta t}=\bm{L:\Delta \varepsilon^*}\tag{1.2c} ΔσΩσΔt+σΩΔt=L:Δε(1.2c)

由于各向同性假设,2个弹性系数 E   μ E\, \mu Eμ,且vumat给出的应变增量的剪切分量不是工程应变,因此相应的弹性矩阵为(偏应变与偏应力): L i j k l = 2 G δ i k δ j l = [ 2 G 0 0 0 0 0 0 2 G 0 0 0 0 0 0 2 G 0 0 0 0 0 0 2 G 0 0 0 0 0 0 2 G 0 0 0 0 0 0 2 G ] {L_{ijkl}}=2G\delta_{ik}\delta_{jl}=\left[\begin{matrix} 2G&0&0&0&0&0\\0&2G&0&0&0&0\\0&0&2G&0&0&0\\0&0&0&2G&0&0\\0&0&0&0&2G&0\\0&0&0&0&0&2G \end{matrix} \right] Lijkl=2Gδikδjl=2G0000002G0000002G0000002G0000002G0000002G

自定义材料参数:props(1)=杨氏模量 E E Eprops(2)=泊松比 μ \mu μ.


2. 12个滑移系

滑移面 { 111 } \{111\} {111}:滑移方向 < 1 1 ˉ 0 >   < 10 1 ˉ >   < 01 1 ˉ > <1\bar10>\,<10\bar1>\,<01\bar1> <11ˉ0><101ˉ><011ˉ>
滑移面 { 1 1 ˉ 1 } \{1\bar11\} {11ˉ1}:滑移方向 < 110 >   < 10 1 ˉ >   < 011 > <110>\,<10\bar1>\,<011> <110><101ˉ><011>
滑移面 { 11 1 ˉ } \{11\bar1\} {111ˉ}:滑移方向 < 1 1 ˉ 0 >   < 101 >   < 011 > <1\bar10>\,<101>\,<011> <11ˉ0><101><011>
滑移面 { 1 1 ˉ 1 ˉ } \{1\bar1\bar1\} {11ˉ1ˉ}:滑移方向 < 110 >   < 101 >   < 01 1 ˉ > <110>\,<101>\,<01\bar1> <110><101><011ˉ>
初始方向:三个欧拉角 φ 1 \varphi_1 φ1 Φ \Phi Φ φ 2 \varphi_2 φ2,通过props(10) props(11) props(12)赋值
经过欧拉角转动后的晶体取向 g g g 为:
g = [ cos ⁡ φ 2 sin ⁡ φ 2 0 − sin ⁡ φ 2 cos ⁡ φ 2 0 0 0 1 ] [ 1 0 0 0 cos ⁡ Φ sin ⁡ Φ 0 − sin ⁡ Φ cos ⁡ Φ ] [ cos ⁡ φ 1 sin ⁡ φ 1 0 − sin ⁡ φ 1 cos ⁡ φ 1 0 0 0 1 ] (2.1) g=\left[ \begin{matrix} \cos \varphi_2 & \sin \varphi_2 & 0\\ -\sin \varphi_2 &\cos \varphi_2 & 0\\ 0&0&&1\end{matrix} \right] \left[ \begin{matrix}1&0&0\\ 0&\cos \varPhi &\sin \varPhi\\ 0&-\sin \varPhi &\cos \varPhi \end{matrix} \right] \left[ \begin{matrix} \cos \varphi_1 & \sin \varphi_1 & 0\\ -\sin \varphi_1 &\cos \varphi_1 & 0\\ 0&0&&1\end{matrix} \right]\tag{2.1} g=cosφ2sinφ20sinφ2cosφ200011000cosΦsinΦ0sinΦcosΦcosφ1sinφ10sinφ1cosφ10001(2.1) = [ cos ⁡ φ 1 cos ⁡ φ 2 − sin ⁡ φ 1 sin ⁡ φ 2 cos ⁡ Φ sin ⁡ φ 1 cos ⁡ φ 2 + cos ⁡ φ 1 sin ⁡ φ 2 cos ⁡ Φ sin ⁡ φ 2 sin ⁡ Φ − cos ⁡ φ 1 sin ⁡ φ 2 − sin ⁡ φ 1 cos ⁡ φ 2 cos ⁡ Φ − sin ⁡ φ 1 sin ⁡ φ 2 + cos ⁡ φ 1 cos ⁡ φ 2 cos ⁡ Φ cos ⁡ φ 2 sin ⁡ Φ sin ⁡ φ 1 sin ⁡ Φ − cos ⁡ φ 1 sin ⁡ Φ cos ⁡ Φ ] R D : < u v w > N D : { h k l } =\left[ \begin{matrix} \cos \varphi_1 \cos \varphi_2- \sin \varphi_1 \sin \varphi_2\cos \varPhi & \sin \varphi_1 \cos \varphi_2+ \cos \varphi_1 \sin \varphi_2\cos \varPhi & \sin\varphi_2\sin\varPhi\\ -\cos \varphi_1 \sin \varphi_2- \sin \varphi_1 \cos \varphi_2\cos \varPhi & -\sin \varphi_1 \sin \varphi_2+ \cos \varphi_1 \cos \varphi_2\cos \varPhi & \cos\varphi_2\sin\varPhi\\ \sin \varphi_1 \sin \varPhi &-\cos\varphi_1\sin\varPhi&\cos\varPhi \end{matrix} \right]\\\quad\\ \qquad\qquad\qquad RD:<uvw>\qquad\qquad\qquad\quad\qquad\qquad\qquad\qquad\qquad\qquad\qquad ND:\{hkl\} =cosφ1cosφ2sinφ1sinφ2cosΦcosφ1sinφ2sinφ1cosφ2cosΦsinφ1sinΦsinφ1cosφ2+cosφ1sinφ2cosΦsinφ1sinφ2+cosφ1cosφ2cosΦcosφ1sinΦsinφ2sinΦcosφ2sinΦcosΦRD:<uvw>ND:{hkl}

当初始欧拉角确定后,计算滑移系在整体坐标中表示
当前滑移系:
滑移面 m = { h   k   l } = { 1 3   1 3   1 3 } ⋅ g (2.2a) m=\{h\,k\,l\}=\{\frac{1}{\sqrt{3}}\,\frac{1}{\sqrt{3}}\,\frac{1}{\sqrt{3}}\} \cdot g\tag{2.2a} m={hkl}={3 13 13 1}g(2.2a)
滑移方向 s = < u   v   w > = < 1 2   − 1 2   0 > ⋅ g (2.2b) s=<u\,v\,w>=<\frac{1}{\sqrt{2}}\,\frac{-1}{\sqrt{2}}\,0>\cdot g\tag{2.2b} s=<uvw>=<2 12 10>g(2.2b)
同理计算其他滑移系,与此同时对滑移系进行归一化。

计算出12个滑移系的Schmid因子” μ i j ( α )   \mu_{ij}^{(\alpha)}\, μij(α)和张量 ω i j ( α )   \omega_{ij}^{(\alpha)}\, ωij(α):

μ i j ( α ) = 1 2 [ s i ( α ) m j ( α ) + s j ( α ) m i ( α ) ] (2.3a) \mu_{ij}^{(\alpha)}=\frac{1}{2}\left[s_i^{(\alpha)}m_j^{(\alpha)}+s_j^{(\alpha)}m_i^{(\alpha)}\right] \tag{2.3a} μij(α)=21[si(α)mj(α)+sj(α)mi(α)](2.3a)

ω i j ( α ) = 1 2 [ s i ( α ) m j ( α ) − s j ( α ) m i ( α ) ] (2.3b) \omega_{ij}^{(\alpha)}=\frac{1}{2}\left[s_i^{(\alpha)}m_j^{(\alpha)}-s_j^{(\alpha)}m_i^{(\alpha)}\right] \tag{2.3b} ωij(α)=21[si(α)mj(α)sj(α)mi(α)](2.3b)

其中: s i ( α ) m j ( α ) = [ s 1   m 1 s 1   m 2 s 1   m 3 s 2   m 1 s 2   m 2 s 2   m 3 s 3   m 1 s 3   m 2 s 3   m 3 ] = [ u h u k u l v h v k v l w h w k w l ] s_i^{(\alpha)}m_j^{(\alpha)}=\left[\begin{matrix} s_1\,m_1&s_1\,m_2&s_1\,m_3\\s_2\,m_1&s_2\,m_2&s_2\,m_3\\s_3\,m_1&s_3\,m_2&s_3\,m_3\\ \end{matrix}\right]=\left[\begin{matrix} uh&uk&ul\\vh&vk&vl\\wh&wk&wl \end{matrix}\right] si(α)mj(α)=s1m1s2m1s3m1s1m2s2m2s3m2s1m3s2m3s3m3=uhvhwhukvkwkulvlwl

μ i j ( α ) = [ s 1   m 1 s 1 m 2 + s 2 m 1 2 s 1 m 3 + s 3 m 1 2 s 1 m 2 + s 2 m 1 2 s 2   m 2 s 2 m 3 + s 3 m 2 2 s 1 m 3 + s 3 m 1 2 s 2 m 3 + s 3 m 2 2 s 3   m 3 ] \mu_{ij}^{(\alpha)}=\left[\begin{matrix} s_1\,m_1&\frac{s_1m_2+s_2m_1}{2}&\frac{s_1m_3+s_3m_1}{2}\\ \frac{s_1m_2+s_2m_1}{2}&s_2\,m_2&\frac{s_2m_3+s_3m_2}{2}\\ \frac{s_1m_3+s_3m_1}{2}&\frac{s_2m_3+s_3m_2}{2}&s_3\,m_3\\ \end{matrix}\right] μij(α)=s1m12s1m2+s2m12s1m3+s3m12s1m2+s2m1s2m22s2m3+s3m22s1m3+s3m12s2m3+s3m2s3m3

ω i j ( α ) = [ 0 s 1 m 2 − s 2 m 1 2 s 1 m 3 − s 3 m 1 2 s 2 m 1 − s 1 m 2 2 0 s 2 m 3 − s 3 m 2 2 s 3 m 1 − s 1 m 3 2 s 3 m 2 − s 2 m 3 2 0 ] \omega_{ij}^{(\alpha)}=\left[\begin{matrix} 0&\frac{s_1m_2-s_2m_1}{2}&\frac{s_1m_3-s_3m_1}{2}\\ \frac{s_2m_1-s_1m_2}{2}&0&\frac{s_2m_3-s_3m_2}{2}\\ \frac{s_3m_1-s_1m_3}{2}&\frac{s_3m_2-s_2m_3}{2}&0\\ \end{matrix}\right] ωij(α)=02s2m1s1m22s3m1s1m32s1m2s2m102s3m2s2m32s1m3s3m12s2m3s3m20

展开:
μ I ( α ) = [ s 1   m 1 s 2   m 2 s 3   m 3 1 2 ( s 1 m 2 + s 2 m 1 ) 1 2 ( s 2 m 3 + s 3 m 2 ) 1 2 ( s 1 m 3 + s 3 m 1 ) ] ω I ( α ) = [ 1 2 ( s 1 m 2 − s 2 m 1 ) 1 2 ( s 2 m 3 − s 3 m 2 ) 1 2 ( s 1 m 3 − s 3 m 1 ) ] \mu_{I}^{(\alpha)}=\left[\begin{matrix} s_1\,m_1\\s_2\,m_2\\s_3\,m_3\\\frac{1}{2}{(s_1m_2+s_2m_1)}\\\frac{1}{2}{(s_2m_3+s_3m_2)}\\\frac{1}{2}{(s_1m_3+s_3m_1)}\\\end{matrix}\right]\quad \omega_{I}^{(\alpha)}=\left[\begin{matrix} \frac{1}{2}{(s_1m_2-s_2m_1)}\\\frac{1}{2}{(s_2m_3-s_3m_2)}\\\frac{1}{2}{(s_1m_3-s_3m_1)}\\\end{matrix}\right]\quad μI(α)=s1m1s2m2s3m321(s1m2+s2m1)21(s2m3+s3m2)21(s1m3+s3m1)ωI(α)=21(s1m2s2m1)21(s2m3s3m2)21(s1m3s3m1)

通过状态变量 STATEV(3*NSLPTL+1)~STATEV(6*NSLPTL)记录滑移面法向 m m mSTATEV(6*NSLPTL+1)~STATEV(9*NSLPTL)记录相对应的滑移方向 s s sNSLPTL为滑移系的数量(状态变量的顺序尽量和黄老师Umat中保持一致)。
针对第一步未开始变形时状态变量为了零,需要为滑移系赋初始值:

C***** 滑移系回归一化赋值后应约1,太小就是还没有赋值
      If (StateOld(1) .EQ. 0.0) 
C*********组装g矩阵      
	      g(1,1)=cos(PROPS(10))*cos(PROPS(12))-sin(PROPS(10))*sin(PROPS(12))*cos(PROPS(11))
	      g(2,1)=-cos(PROPS(10))*sin(PROPS(11))-sin(PROPS(10))*cos(PROPS(12))*cos(PROPS(11))
	      g(3,1)=sin(PROPS(10))*sin(PROPS(11))
	      g(1,2)=sin(PROPS(10))*cos(PROPS(12))+cos(PROPS(10))*sin(PROPS(12))*cos(PROPS(11))
	      g(2,2)=-sin(PROPS(10))*sin(PROPS(12))+cos(PROPS(10))*cos(PROPS(12))*cos(PROPS(11))
	      g(3,2)=-cos(PROPS(10))*sin(PROPS(11))
	      g(1,3)=sin(PROPS(12))*sin(PROPS(11))
	      g(2,3)=cos(PROPS(12))*sin(PROPS(11))
	      g(3,3)=cos(PROPS(11))
C*********初始滑移面 	      
	      Do I=1,3
	      	StateOld(3*NSLPTL+I)=(1.0/Sqrt(3))*(g(1,I)+g(2,I)+g(3,I))
	      	StateOld(3*NSLPTL+I+3)=StateOld(3*NSLPTL+I)
	      	StateOld(3*NSLPTL+I+6)=StateOld(3*NSLPTL+I)
	      
	      	StateOld(3*NSLPTL+I+9)=(1.0/Sqrt(3))*(g(1,I)-g(2,I)+g(3,I))
	      	StateOld(3*NSLPTL+I+12)=StateOld(3*NSLPTL+I)
	      	StateOld(3*NSLPTL+I+15)=StateOld(3*NSLPTL+I)
	      
	      	StateOld(3*NSLPTL+I+18)=(1.0/Sqrt(3))*(g(1,I)+g(2,I)-g(3,I))
	      	StateOld(3*NSLPTL+I+21)=StateOld(3*NSLPTL+I)
	      	StateOld(3*NSLPTL+I+24)=StateOld(3*NSLPTL+I)
	     
	      	StateOld(3*NSLPTL+I+27)=(1.0/Sqrt(3))*(g(1,I)-g(2,I)-g(3,I))
	      	StateOld(3*NSLPTL+I+30)=StateOld(3*NSLPTL+I)
	      	StateOld(3*NSLPTL+I+33)=StateOld(3*NSLPTL+I)
	      End Do
C*********初始滑移方向	
          Do I=1,3
	      	StateOld(6*NSLPTL+I)=(1.0/Sqrt(2))*(g(1,I)-g(2,I))
	      	StateOld(6*NSLPTL+I+3)=(1.0/Sqrt(2))*(g(1,I)-g(3,I))
	      	StateOld(6*NSLPTL+I+6)=(1.0/Sqrt(2))*(g(2,I)-g(3,I))
	      	
	      	StateOld(6*NSLPTL+I+9)=(1.0/Sqrt(2))*(g(1,I)+g(2,I))
	      	StateOld(6*NSLPTL+I+12)=(1.0/Sqrt(2))*(g(1,I)-g(3,I))
	      	StateOld(6*NSLPTL+I+15)=(1.0/Sqrt(2))*(g(2,I)+g(3,I))
	      	
	      	StateOld(6*NSLPTL+I+18)=(1.0/Sqrt(2))*(g(1,I)-g(2,I))
	      	StateOld(6*NSLPTL+I+21)=(1.0/Sqrt(2))*(g(1,I)+g(3,I))
	      	StateOld(6*NSLPTL+I+24)=(1.0/Sqrt(2))*(g(2,I)+g(3,I))
	      	
	      	StateOld(6*NSLPTL+I+27)=(1.0/Sqrt(2))*(g(1,I)+g(2,I))
	      	StateOld(6*NSLPTL+I+30)=(1.0/Sqrt(2))*(g(1,I)+g(3,I))
	      	StateOld(6*NSLPTL+I+33)=(1.0/Sqrt(2))*(g(2,I)-g(3,I))
	      End Do      
      End If
C*****组装“schmid”因子mu(12,6)和旋转张量omega(12,3)
      Do I=1,NSLPTL
      	mu(I,1)=StateOld(3*NSLPTL+3*I-2)*StateOld(6*NSLPTL+3*I-2)
      	mu(I,2)=StateOld(3*NSLPTL+3*I-1)*StateOld(6*NSLPTL+3*I-1)
      	mu(I,3)=StateOld(3*NSLPTL+3*I)*StateOld(6*NSLPTL+3*I)
      	mu(I,4)=0.5*(StateOld(3*NSLPTL+3*I-2)*StateOld(6*NSLPTL+3*I-1)
    1      +StateOld(3*NSLPTL+3*I-1)*StateOld(6*NSLPTL+3*I-2))
      	mu(I,5)=0.5*(StateOld(3*NSLPTL+3*I)*StateOld(6*NSLPTL+3*I-1)
    1  	  +StateOld(3*NSLPTL+3*I-1)*StateOld(6*NSLPTL+3*I))
      	mu(I,6)=0.5*(StateOld(3*NSLPTL+3*I)*StateOld(6*NSLPTL+3*I-2)
    1  	  +StateOld(3*NSLPTL+3*I-2)*StateOld(6*NSLPTL+3*I))
      	omega(I,1)=0.5*(StateOld(3*NSLPTL+3*I-1)*StateOld(6*NSLPTL+3*I-2)
    1  	  -StateOld(3*NSLPTL+3*I-2)*StateOld(6*NSLPTL+3*I-1))
      	omega(I,2)=0.5*(StateOld(3*NSLPTL+3*I)*StateOld(6*NSLPTL+3*I-1)
    1  	  -StateOld(3*NSLPTL+3*I-1)*StateOld(6*NSLPTL+3*I))
      	omega(I,3)=0.5*(StateOld(3*NSLPTL+3*I)*StateOld(6*NSLPTL+3*I-2)
    1  	-StateOld(3*NSLPTL+3*I-2)*StateOld(6*NSLPTL+3*I)) 
      End Do

3. 旋转

在umat中给出了 Δ R \Delta R ΔR DROT, 需要通过 F = R U → F U − 1 = R F=RU\to FU^{-1}=R F=RUFU1=R求出新老旧两个 R R R,通过做差求出 Δ R \Delta R ΔR
Δ R = R N e w − R O l d (3.1) \Delta R=R^{New}-R^{Old}\tag{3.1} ΔR=RNewROld(3.1)
F = [ F 1 F 4 F 9 F 7 F 2 F 5 F 6 F 8 F 3 ] U = [ U 1 U 4 U 6 U 4 U 2 U 5 U 6 U 5 U 3 ] F=\left[\begin{matrix} F_1&F_4&F_9\\F_7&F_2&F_5\\F_6&F_8&F_3 \end{matrix}\right] \quad U=\left[\begin{matrix} U_1&U_4&U_6\\U_4&U_2&U_5\\U_6&U_5&U_3 \end{matrix}\right] F=F1F7F6F4F2F8F9F5F3U=U1U4U6U4U2U5U6U5U3
det ⁡ ( U ) = U 1 U 2 U 3 + 2 U 4 U 5 U 6 − U 1 U 5 U 5 − U 3 U 4 U 4 − U 2 U 6 U 6 \det(U)=U_1U_2U_3+2U_4U_5U_6-U_1U_5U_5-U_3U_4U_4-U_2U_6U_6 det(U)=U1U2U3+2U4U5U6U1U5U5U3U4U4U2U6U6
U U U 的伴随 U ∗ U^* U
U ∗ = [ U 2 U 3 − U 5 U 5 U 5 U 6 − U 3 U 4 U 4 U 5 − U 2 U 6 U 5 U 6 − U 3 U 4 U 1 U 3 − U 6 U 6 U 4 U 6 − U 1 U 5 U 4 U 5 − U 2 U 6 U 4 U 6 − U 1 U 5 U 1 U 2 − U 4 U 4 ] U^*=\left[\begin{matrix} U_2U_3-U_5U_5& U_5U_6-U_3U_4& U_4U_5-U_2U_6\\ U_5U_6-U_3U_4& U_1U_3-U_6U_6& U_4U_6-U_1U_5\\ U_4U_5-U_2U_6& U_4U_6-U_1U_5& U_1U_2-U_4U_4 \end{matrix}\right] U=U2U3U5U5U5U6U3U4U4U5U2U6U5U6U3U4U1U3U6U6U4U6U1U5U4U5U2U6U4U6U1U5U1U2U4U4

		DetOld=stretchOld(NB,1)*stretchOld(NB,2)*stretchOld(NB,3)
     1  +2.0*stretchOld(NB,4)*stretchOld(NB,5)*stretchOld(NB,6)
     2  -stretchOld(NB,1)*stretchOld(NB,5)*stretchOld(NB,5)
     3  -stretchOld(NB,3)*stretchOld(NB,4)*stretchOld(NB,4)
     4  -stretchOld(NB,2)*stretchOld(NB,6)*stretchOld(NB,6)
        ROld(1,1)=(1.0/DetOld)*(defgradOld(NB,1)*
     1    (stretchOld(NB,2)*stretchOld(NB,3)-stretchOld(NB,5)*stretchOld(NB,5))
     2    +defgradOld(NB,4)*
     3    (stretchOld(NB,5)*stretchOld(NB,6)-stretchOld(NB,3)*stretchOld(NB,4))
     4    +defgradOld(NB,9)*
     5    (stretchOld(NB,4)*stretchOld(NB,5)-stretchOld(NB,2)*stretchOld(NB,6)))
        ROld(2,1)=(1.0/DetOld)*(defgradOld(NB,7)*
     1    (stretchOld(NB,2)*stretchOld(NB,3)-stretchOld(NB,5)*stretchOld(NB,5))
     2    +defgradOld(NB,2)*
     3    (stretchOld(NB,5)*stretchOld(NB,6)-stretchOld(NB,3)*stretchOld(NB,4))
     4    +defgradOld(NB,5)*
     5    (stretchOld(NB,4)*stretchOld(NB,5)-stretchOld(NB,2)*stretchOld(NB,6)))
        ROld(3,1)=(1.0/DetOld)*(defgradOld(NB,6)*
     1    (stretchOld(NB,2)*stretchOld(NB,3)-stretchOld(NB,5)*stretchOld(NB,5))
     2    +defgradOld(NB,8)*
     3    (stretchOld(NB,5)*stretchOld(NB,6)-stretchOld(NB,3)*stretchOld(NB,4))
     4    +defgradOld(NB,3)*
     5    (stretchOld(NB,4)*stretchOld(NB,5)-stretchOld(NB,2)*stretchOld(NB,6)))
        ROld(1,2)=(1.0/DetOld)*(defgradOld(NB,1)*
     1    (stretchOld(NB,5)*stretchOld(NB,6)-stretchOld(NB,3)*stretchOld(NB,4))
     2    +defgradOld(NB,4)*
     3    (stretchOld(NB,1)*stretchOld(NB,3)-stretchOld(NB,6)*stretchOld(NB,6))
     4    +defgradOld(NB,9)*
     5    (stretchOld(NB,4)*stretchOld(NB,6)-stretchOld(NB,1)*stretchOld(NB,5)))
        ROld(2,2)=(1.0/DetOld)*(defgradOld(NB,7)*
     1    (stretchOld(NB,5)*stretchOld(NB,6)-stretchOld(NB,3)*stretchOld(NB,4))
     2    +defgradOld(NB,2)*
     3    (stretchOld(NB,1)*stretchOld(NB,3)-stretchOld(NB,6)*stretchOld(NB,6))
     4    +defgradOld(NB,5)*
     5    (stretchOld(NB,4)*stretchOld(NB,6)-stretchOld(NB,1)*stretchOld(NB,5)))
        ROld(3,2)=(1.0/DetOld)*(defgradOld(NB,6)*
     1    (stretchOld(NB,5)*stretchOld(NB,6)-stretchOld(NB,3)*stretchOld(NB,4))
     2    +defgradOld(NB,8)*
     3    (stretchOld(NB,1)*stretchOld(NB,3)-stretchOld(NB,6)*stretchOld(NB,6))
     4    +defgradOld(NB,3)*
     5    (stretchOld(NB,4)*stretchOld(NB,6)-stretchOld(NB,1)*stretchOld(NB,5)))
        ROld(1,3)=(1.0/DetOld)*(defgradOld(NB,1)*
     1    (stretchOld(NB,4)*stretchOld(NB,5)-stretchOld(NB,2)*stretchOld(NB,6))
     2    +defgradOld(NB,4)*
     3    (stretchOld(NB,4)*stretchOld(NB,6)-stretchOld(NB,1)*stretchOld(NB,5))
     4    +defgradOld(NB,9)*
     5    (stretchOld(NB,1)*stretchOld(NB,2)-stretchOld(NB,4)*stretchOld(NB,4)))
        ROld(2,3)=(1.0/DetOld)*(defgradOld(NB,7)*
     1    (stretchOld(NB,4)*stretchOld(NB,5)-stretchOld(NB,2)*stretchOld(NB,6))
     2    +defgradOld(NB,2)*
     3    (stretchOld(NB,4)*stretchOld(NB,6)-stretchOld(NB,1)*stretchOld(NB,5))
     4    +defgradOld(NB,5)*
     5    (stretchOld(NB,1)*stretchOld(NB,2)-stretchOld(NB,4)*stretchOld(NB,4)))
        ROld(3,3)=(1.0/DetOld)*(defgradOld(NB,6)*
     1    (stretchOld(NB,4)*stretchOld(NB,5)-stretchOld(NB,2)*stretchOld(NB,6))
     2    +defgradOld(NB,8)*
     3    (stretchOld(NB,4)*stretchOld(NB,6)-stretchOld(NB,1)*stretchOld(NB,5))
     4    +defgradOld(NB,3)*
     5    (stretchOld(NB,1)*stretchOld(NB,2)-stretchOld(NB,4)*stretchOld(NB,4)))
        Write(*,*)"ROld=",ROld(1,:)
        Write(*,*)"ROld=",ROld(2,:)
        Write(*,*)"ROld=",ROld(3,:)

        DetNew=stretchNew(NB,1)*stretchNew(NB,2)*stretchNew(NB,3)
     1    +2.0*stretchNew(NB,4)*stretchNew(NB,5)*stretchNew(NB,6)
     2    -stretchNew(NB,1)*stretchNew(NB,5)*stretchNew(NB,5)
     3    -stretchNew(NB,3)*stretchNew(NB,4)*stretchNew(NB,4)
     4    -stretchNew(NB,2)*stretchNew(NB,6)*stretchNew(NB,6)
        RNew(1,1)=(1.0/DetNew)*(defgradNew(NB,1)*
     1    (stretchNew(NB,2)*stretchNew(NB,3)-stretchNew(NB,5)*stretchNew(NB,5))
     2    +defgradNew(NB,4)*
     3    (stretchNew(NB,5)*stretchNew(NB,6)-stretchNew(NB,3)*stretchNew(NB,4))
     4    +defgradNew(NB,9)*
     5    (stretchNew(NB,4)*stretchNew(NB,5)-stretchNew(NB,2)*stretchNew(NB,6)))
        RNew(2,1)=(1.0/DetNew)*(defgradNew(NB,7)*
     1    (stretchNew(NB,2)*stretchNew(NB,3)-stretchNew(NB,5)*stretchNew(NB,5))
     2    +defgradNew(NB,2)*
     3    (stretchNew(NB,5)*stretchNew(NB,6)-stretchNew(NB,3)*stretchNew(NB,4))
     4    +defgradNew(NB,5)*
     5    (stretchNew(NB,4)*stretchNew(NB,5)-stretchNew(NB,2)*stretchNew(NB,6)))
        RNew(3,1)=(1.0/DetNew)*(defgradNew(NB,6)*
     1    (stretchNew(NB,2)*stretchNew(NB,3)-stretchNew(NB,5)*stretchNew(NB,5))
     2    +defgradNew(NB,8)*
     3    (stretchNew(NB,5)*stretchNew(NB,6)-stretchNew(NB,3)*stretchNew(NB,4))
     4    +defgradNew(NB,3)*
     5    (stretchNew(NB,4)*stretchNew(NB,5)-stretchNew(NB,2)*stretchNew(NB,6)))
        RNew(1,2)=(1.0/DetNew)*(defgradNew(NB,1)*
     1    (stretchNew(NB,5)*stretchNew(NB,6)-stretchNew(NB,3)*stretchNew(NB,4))
     2    +defgradNew(NB,4)*
     3    (stretchNew(NB,1)*stretchNew(NB,3)-stretchNew(NB,6)*stretchNew(NB,6))
     4    +defgradNew(NB,9)*
     5    (stretchNew(NB,4)*stretchNew(NB,6)-stretchNew(NB,1)*stretchNew(NB,5)))
        RNew(2,2)=(1.0/DetNew)*(defgradNew(NB,7)*
     1    (stretchNew(NB,5)*stretchNew(NB,6)-stretchNew(NB,3)*stretchNew(NB,4))
     2    +defgradNew(NB,2)*
     3    (stretchNew(NB,1)*stretchNew(NB,3)-stretchNew(NB,6)*stretchNew(NB,6))
     4    +defgradNew(NB,5)*
     5    (stretchNew(NB,4)*stretchNew(NB,6)-stretchNew(NB,1)*stretchNew(NB,5)))
        RNew(3,2)=(1.0/DetNew)*(defgradNew(NB,6)*
     1    (stretchNew(NB,5)*stretchNew(NB,6)-stretchNew(NB,3)*stretchNew(NB,4))
     2    +defgradNew(NB,8)*
     3    (stretchNew(NB,1)*stretchNew(NB,3)-stretchNew(NB,6)*stretchNew(NB,6))
     4    +defgradNew(NB,3)*
     5    (stretchNew(NB,4)*stretchNew(NB,6)-stretchNew(NB,1)*stretchNew(NB,5)))
        RNew(1,3)=(1.0/DetNew)*(defgradNew(NB,1)*
     1    (stretchNew(NB,4)*stretchNew(NB,5)-stretchNew(NB,2)*stretchNew(NB,6))
     2    +defgradNew(NB,4)*
     3    (stretchNew(NB,4)*stretchNew(NB,6)-stretchNew(NB,1)*stretchNew(NB,5))
     4    +defgradNew(NB,9)*
     5    (stretchNew(NB,1)*stretchNew(NB,2)-stretchNew(NB,4)*stretchNew(NB,4)))
        RNew(2,3)=(1.0/DetNew)*(defgradNew(NB,7)*
     1    (stretchNew(NB,4)*stretchNew(NB,5)-stretchNew(NB,2)*stretchNew(NB,6))
     2    +defgradNew(NB,2)*
     3    (stretchNew(NB,4)*stretchNew(NB,6)-stretchNew(NB,1)*stretchNew(NB,5))
     4    +defgradNew(NB,5)*
     5    (stretchNew(NB,1)*stretchNew(NB,2)-stretchNew(NB,4)*stretchNew(NB,4)))
        RNew(3,3)=(1.0/DetNew)*(defgradNew(NB,6)*
     1    (stretchNew(NB,4)*stretchNew(NB,5)-stretchNew(NB,2)*stretchNew(NB,6))
     2    +defgradNew(NB,8)*
     3    (stretchNew(NB,4)*stretchNew(NB,6)-stretchNew(NB,1)*stretchNew(NB,5))
     4    +defgradNew(NB,3)*
     5    (stretchNew(NB,1)*stretchNew(NB,2)-stretchNew(NB,4)*stretchNew(NB,4)))
        Write(*,*)"RNew=",RNew(1,:)
        Write(*,*)"RNew=",RNew(2,:)
        Write(*,*)"RNew=",RNew(3,:)

        do I=1,3
          do J=1,3
            RInc(I,J)=RNew(I,J)-ROld(I,J)
          end do
        end do 
        Write(*,*)"RInc=",RInc(1,:)
        Write(*,*)"RInc=",RInc(2,:)
        Write(*,*)"RInc=",RInc(3,:)

再通过 Δ R    \Delta R\,\, ΔRDROT,求出 Ω Δ t    \Omega\Delta t\,\, ΩΔtDSPIN
Δ R = ( I − 1 2 Ω Δ t ) − 1 ⋅ ( I + 1 2 Ω Δ t ) (3.2a) {\Delta R=\left(I-\frac{1}{2} \Omega \Delta t \right)^{-1}\cdot\left(I+\frac{1}{2} \Omega \Delta t \right)}\tag{3.2a} ΔR=(I21ΩΔt)1(I+21ΩΔt)(3.2a)
Ω Δ t = 2 ( Δ R − I ) ( Δ R + I ) − 1 (3.2b) {\Omega \Delta t =2\left(\Delta R-I \right)\left(\Delta R+I \right)^{-1}} \tag{3.2b} ΩΔt=2(ΔRI)(ΔR+I)1(3.2b)
Δ R = [ Δ R 11 Δ R 12 Δ R 13 Δ R 21 Δ R 22 Δ R 23 Δ R 31 Δ R 32 Δ R 33 ] \Delta R=\left[\begin{matrix} \Delta R_{11}&\Delta R_{12}&\Delta R_{13}\\\Delta R_{21}&\Delta R_{22}&\Delta R_{23}\\\Delta R_{31}&\Delta R_{32}&\Delta R_{33} \end{matrix}\right] ΔR=ΔR11ΔR21ΔR31ΔR12ΔR22ΔR32ΔR13ΔR23ΔR33
Δ R + I = [ Δ R 11 + 1 Δ R 12 Δ R 13 Δ R 21 Δ R 22 + 1 Δ R 23 Δ R 31 Δ R 32 Δ R 33 + 1 ] \Delta R+I=\left[\begin{matrix} \Delta R_{11}+1&\Delta R_{12}&\Delta R_{13}\\\Delta R_{21}&\Delta R_{22}+1&\Delta R_{23}\\\Delta R_{31}&\Delta R_{32}&\Delta R_{33}+1 \end{matrix}\right] ΔR+I=ΔR11+1ΔR21ΔR31ΔR12ΔR22+1ΔR32ΔR13ΔR23ΔR33+1
( Δ R + I ) = [ Δ R 11 + 1 Δ R 12 Δ R 13 Δ R 21 Δ R 22 + 1 Δ R 23 Δ R 31 Δ R 32 Δ R 33 + 1 ] (\Delta R+I)^{}=\left[\begin{matrix} \Delta R_{11}+1&\Delta R_{12}&\Delta R_{13}\\\Delta R_{21}&\Delta R_{22}+1&\Delta R_{23}\\\Delta R_{31}&\Delta R_{32}&\Delta R_{33}+1 \end{matrix}\right] (ΔR+I)=ΔR11+1ΔR21ΔR31ΔR12ΔR22+1ΔR32ΔR13ΔR23ΔR33+1



4. 率相关的滑移硬化本构

基于Schmid准则, α \alpha α 滑移系的滑移率 γ ˙ ( α ) \dot\gamma^{(\alpha)} γ˙(α) 由分切应力 τ ( α ) \tau^{(\alpha)} τ(α)决定:
γ ˙ ( α ) = a ˙ f ( α ) ( τ ( α ) g ( α ) ) (4.1a) \dot\gamma^{(\alpha)}=\dot a f^{(\alpha)}\left(\frac{\tau^{(\alpha)}}{g^{(\alpha)}} \right)\tag{4.1a} γ˙(α)=a˙f(α)(g(α)τ(α))(4.1a)

其中, f ( α ) ( x ) = x ∣ x ∣ n − 1 (4.1b) f^{(\alpha)}(x)=x|x|^{n-1}\tag{4.1b} f(α)(x)=xxn1(4.1b)

应变硬化: g ˙ ( α ) = ∑ β h α β γ ˙ ( β ) \dot g^{(\alpha)}=\sum_\beta h_{\alpha\beta}\dot\gamma^{(\beta)} g˙(α)=βhαβγ˙(β)

其中自硬化系数: h α α = h ( γ ) = h 0 sech ⁡ 2 ∣ h 0 γ τ s − τ 0 ∣ ( α 不 求 和 ) (4.2a) h_{\alpha\alpha}=h(\gamma)=h_0\operatorname{sech}^2\large{\left| \frac{h_0\gamma}{\tau_s-\tau_0} \right|}\quad (\alpha 不求和)\tag{4.2a} hαα=h(γ)=h0sech2τsτ0h0γ(α)(4.2a)

其中 h 0 h_0 h0 为初始硬化模量, τ 0 \tau_0 τ0屈服强度,等于当前强度的初始值 g ( α ) ( 0 ) g^{(\alpha)}(0) g(α)(0) γ \gamma γ 是所有滑移系上的Taylor累计剪切应变:
γ = ∑ α ∫ 0 t ∣ γ ˙ ( α ) ∣ d t (4.2b) \gamma=\sum_\alpha\int_{0}^{t} \left|\dot{\gamma}^{(\alpha)}\right|dt\tag{4.2b} γ=α0tγ˙(α)dt(4.2b)
潜硬化模量:
h α β = q h ( γ ) ( α ≠ β ) (4.2c) h_{\alpha\beta}=qh(\gamma)\quad(\alpha \ne \beta)\tag{4.2c} hαβ=qh(γ)(α=β)(4.2c)

自定义材料参数:props(3)=参考滑移率 a ˙ \dot a a˙props(4)=滑移率指数 n n nprops(5)=参考硬化系数 h 0 h_0 h0props(6)=初始屈服强度 τ 0 \tau_0 τ0props(7)=break-through突破强度 τ s \tau_s τsprops(8)=潜硬化系数 q q q


5. 求解12个滑移量

向前梯度插值求解黄老师umat中的公式(3.2.5):
∑ β { δ α β + θ   Δ t ∂ γ ˙ ( α ) ∂ τ ( α ) [ L i j k l μ k l ( α ) + ω i k ( α ) σ j k + ω j k ( α ) σ i k ] μ i j ( β ) − θ   Δ t ∂ γ ˙ ( α ) ∂ g ( α ) h α β   sign ⁡ ( γ ˙ ( β ) ) } Δ γ ( β ) = γ ˙ t ( α ) Δ t + θ   Δ t ∂ γ ˙ ( α ) ∂ τ ( α ) [ L i j k l μ k l ( α ) + ω i k ( α ) σ j k + ω j k ( α ) σ i k ] Δ ε i j 转 化 为    ⟹    A A ⋅ Δ γ = Y (5.1) \begin{aligned} &\sum_{\beta}\left\{\delta_{\alpha\beta} + \theta\,\Delta t \frac{\partial \dot\gamma^{(\alpha)}}{\partial \tau^{(\alpha)}} \left[L_{ijkl} \mu_{kl}^{(\alpha)} +\omega_{ik}^{(\alpha)} \sigma_{jk} +\omega_{jk}^{(\alpha)} \sigma_{ik} \right]\mu_{ij}^{(\beta)} -\theta\,\Delta t \frac{\partial \dot\gamma^{(\alpha)}}{\partial g^{(\alpha)}} h_{\alpha\beta}\,\operatorname{sign}\left( \dot\gamma^{(\beta)} \right) \right\} \Delta \gamma^{(\beta)}\\ &=\dot\gamma_t^{(\alpha)}\Delta t+\theta\,\Delta t \frac{\partial \dot\gamma^{(\alpha)}}{\partial \tau^{(\alpha)}} \left[L_{ijkl} \mu_{kl}^{(\alpha)} +\omega_{ik}^{(\alpha)} \sigma_{jk} +\omega_{jk}^{(\alpha)} \sigma_{ik} \right]\Delta \varepsilon_{ij}\tag{5.1}\\\quad\\ &\qquad 转化为\implies \bm{AA\cdot \Delta \gamma=Y} \end{aligned} β{δαβ+θΔtτ(α)γ˙(α)[Lijklμkl(α)+ωik(α)σjk+ωjk(α)σik]μij(β)θΔtg(α)γ˙(α)hαβsign(γ˙(β))}Δγ(β)=γ˙t(α)Δt+θΔtτ(α)γ˙(α)[Lijklμkl(α)+ωik(α)σjk+ωjk(α)σik]ΔεijAAΔγ=Y(5.1)
props(9)=梯度差值系数 θ \theta θ

求解 ∂ γ ˙ ( α ) ∂ τ ( α ) \Large\frac{\partial \dot\gamma^{(\alpha)}}{\partial \tau^{(\alpha)}} τ(α)γ˙(α) ∂ γ ˙ ( α ) ∂ g ( α ) \Large\frac{\partial \dot\gamma^{(\alpha)}}{\partial g^{(\alpha)}} g(α)γ˙(α),对(4.1) 求导:
∂ γ ˙ ( α ) ∂ f ( α ) = a ˙ d f ( α ) d x = n ∣ x ∣ n − 1 其 中   x = τ ( α ) g ( α ) (5.2a) \frac{\partial\dot\gamma^{(\alpha)}}{\partial f^{(\alpha)}}=\dot a \quad \frac{d f^{(\alpha)}}{dx}=n|x|^{n-1} \quad 其中\, x=\frac{\tau^{(\alpha)}}{g^{(\alpha)}} \tag{5.2a} f(α)γ˙(α)=a˙dxdf(α)=nxn1x=g(α)τ(α)(5.2a)

∂ x ∂ τ ( α ) = 1 g ( α ) ∂ x ∂ g ( α ) = − τ ( α ) g ( α ) 2 (5.2b) \frac{\partial x}{\partial \tau^{(\alpha)}}=\frac{1}{g^{(\alpha)}} \quad \frac{\partial x}{\partial g^{(\alpha)}}=\frac{-\tau^{(\alpha)}}{g^{(\alpha)2}} \tag{5.2b} τ(α)x=g(α)1g(α)x=g(α)2τ(α)(5.2b)

∂ γ ˙ ( α ) ∂ τ ( α ) = n a ˙ ∣ τ ( α ) g ( α ) ∣ n − 1 1 g ( α ) (5.2c) \frac{\partial \dot\gamma^{(\alpha)}}{\partial \tau^{(\alpha)}}=n\dot a \left|\frac{\tau^{(\alpha)}}{g^{(\alpha)}} \right|^{n-1} \frac{1}{g^{(\alpha)}} \tag{5.2c} τ(α)γ˙(α)=na˙g(α)τ(α)n1g(α)1(5.2c)

∂ γ ˙ ( α ) ∂ g ( α ) = n a ˙ ∣ τ ( α ) g ( α ) ∣ n − 1 − τ ( α ) g ( α ) 2 (5.2d) \frac{\partial \dot\gamma^{(\alpha)}}{\partial g^{(\alpha)}}=n\dot a \left|\frac{\tau^{(\alpha)}}{g^{(\alpha)}} \right|^{n-1} \frac{-{\tau^{(\alpha)}}}{g^{(\alpha)2}} \tag{5.2d} g(α)γ˙(α)=na˙g(α)τ(α)n1g(α)2τ(α)(5.2d)

A i j ( α ) = L i j k l μ k l ( α ) + ω i k ( α ) σ j k + ω j k ( α ) σ i k A_{ij}^{(\alpha)}=L_{ijkl} \mu_{kl}^{(\alpha)} +\omega_{ik}^{(\alpha)} \sigma_{jk} +\omega_{jk}^{(\alpha)} \sigma_{ik} Aij(α)=Lijklμkl(α)+ωik(α)σjk+ωjk(α)σik
L i j k l μ k l ( α ) = 2 G μ i j ( α ) L_{ijkl} \mu_{kl}^{(\alpha)}=2G\mu_{ij}^{(\alpha)} Lijklμkl(α)=2Gμij(α)

ω i k ( α ) σ j k = [ 0 ω 1 ω 3 − ω 1 0 ω 2 − ω 3 − ω 2 0 ] [ σ 1 σ 4 σ 6 σ 4 σ 2 σ 5 σ 6 σ 5 σ 3 ] = [ ω 1 σ 4 + ω 3 σ 6 ω 1 σ 2 + ω 3 σ 5 ω 1 σ 5 + ω 3 σ 3 − ω 1 σ 1 + ω 2 σ 6 − ω 1 σ 4 + ω 2 σ 5 − ω 1 σ 6 + ω 2 σ 3 − ω 3 σ 1 − ω 2 σ 4 − ω 3 σ 4 − ω 2 σ 2 − ω 3 σ 6 − ω 2 σ 5 ] \begin{aligned} \omega_{ik}^{(\alpha)} \sigma_{jk} &=\left[\begin{matrix} 0&\omega_1&\omega_3\\-\omega_1&0&\omega_2\\-\omega_3&-\omega_2&0 \end{matrix} \right]\left[\begin{matrix} \sigma_1&\sigma_4&\sigma_6\\ \sigma_4&\sigma_2&\sigma_5\\ \sigma_6&\sigma_5&\sigma_3 \end{matrix} \right]\\ &=\left[\begin{matrix} \omega_1 \sigma_4+\omega_3 \sigma_6&\omega_1 \sigma_2+\omega_3 \sigma_5&\omega_1 \sigma_5+\omega_3 \sigma_3\\ -\omega_1 \sigma_1+\omega_2 \sigma_6&-\omega_1 \sigma_4+\omega_2 \sigma_5&-\omega_1\sigma_6+\omega_2 \sigma_3\\ -\omega_3 \sigma_1-\omega_2 \sigma_4&-\omega_3 \sigma_4-\omega_2 \sigma_2&-\omega_3 \sigma_6-\omega_2 \sigma_5 \end{matrix} \right]\end{aligned} ωik(α)σjk=0ω1ω3ω10ω2ω3ω20σ1σ4σ6σ4σ2σ5σ6σ5σ3=ω1σ4+ω3σ6ω1σ1+ω2σ6ω3σ1ω2σ4ω1σ2+ω3σ5ω1σ4+ω2σ5ω3σ4ω2σ2ω1σ5+ω3σ3ω1σ6+ω2σ3ω3σ6ω2σ5

ω j k ( α ) σ i k = σ i k ω j k ( α ) = σ i k ω k j ( α ) T = ( ω i k ( α ) σ k j ) T \omega_{jk}^{(\alpha)} \sigma_{ik}=\sigma_{ik}\omega_{jk}^{(\alpha)}=\sigma_{ik}\omega_{kj}^{(\alpha)T}=(\omega_{ik}^{(\alpha)} \sigma_{kj})^T ωjk(α)σik=σikωjk(α)=σikωkj(α)T=(ωik(α)σkj)T

A i j ( α ) = L i j k l μ k l ( α ) + ω i k ( α ) σ j k + ω j k ( α ) σ i k = [ 2 ( ω 1 σ 4 + ω 3 σ 6 ) + 2 G μ 1 ω 1 σ 2 + ω 3 σ 5 − ω 1 σ 1 + ω 2 σ 6 + 2 G μ 4 ω 1 σ 5 + ω 3 σ 3 − ω 3 σ 1 − ω 2 σ 4 + 2 G μ 6 . . 2 ( − ω 1 σ 4 + ω 2 σ 5 ) + 2 G μ 2 − ω 1 σ 6 + ω 2 σ 3 − ω 3 σ 4 − ω 2 σ 2 + 2 G μ 5 . . . . 2 ( − ω 3 σ 6 − ω 2 σ 5 ) + 2 G μ 3 ] \begin{aligned} &A_{ij}^{(\alpha)}=L_{ijkl} \mu_{kl}^{(\alpha)} +\omega_{ik}^{(\alpha)} \sigma_{jk} +\omega_{jk}^{(\alpha)} \sigma_{ik}\\ &=\left[\begin{matrix} 2(\omega_1 \sigma_4+\omega_3 \sigma_6) +2G\mu_1& \omega_1 \sigma_2+\omega_3 \sigma_5-\omega_1 \sigma_1+\omega_2 \sigma_6+2G\mu_4& \omega_1\sigma_5+\omega_3 \sigma_3-\omega_3 \sigma_1-\omega_2 \sigma_4+2G\mu_6\\ ..&2(-\omega_1 \sigma_4+\omega_2\sigma_5)+2G\mu_2&-\omega_1\sigma_6+\omega_2 \sigma_3-\omega_3 \sigma_4-\omega_2 \sigma_2+2G\mu_5\\ ..&..&2(-\omega_3 \sigma_6-\omega_2 \sigma_5)+2G\mu_3 \end{matrix} \right] \end{aligned} Aij(α)=Lijklμkl(α)+ωik(α)σjk+ωjk(α)σik=2(ω1σ4+ω3σ6)+2Gμ1....ω1σ2+ω3σ5ω1σ1+ω2σ6+2Gμ42(ω1σ4+ω2σ5)+2Gμ2..ω1σ5+ω3σ3ω3σ1ω2σ4+2Gμ6ω1σ6+ω2σ3ω3σ4ω2σ2+2Gμ52(ω3σ6ω2σ5)+2Gμ3

滑移系的当前强度 g ( α ) g^{(\alpha)} g(α) STATE(1)~STATE(NSLPTL),滑移率 γ ˙ α \dot\gamma^{\alpha} γ˙α STATE(1*NSLPTL+1)~STATE(2*NSLPTL)和当前的分切应力 τ ( α ) \tau^{(\alpha)} τ(α)STATE(2*NSLPTL+1)~STATE(3*NSLPTL),Taylor累计剪切应变STATE(10*NSPLTL+1)通过状态变量传递回来
伪程序:

      NSLPTL=12  ! 12个滑移系
C*****计算 DgammaDtau(12)DgammaDg(12), 引入中间值 DFDX12)
	  Do I=1,NSLPTL
	  	DFDX(I)=dtArray(1)*props(9)*props(3)*props(4)*(Abs(STATEV(2*NSLPTL+I)/STATEV(I))**(props(4)-1.0))
	  	DgammaDtau(I)=DFDX(I)/STATEV(I)
	  	DgammaDg(I)=DFDX(I)*(-STATEV(I+2*NSLPTL))/(STATEV(I)**2)
	  End Do
C*****计算自硬化系数Haa,潜硬化系数Hab
      Haa=props(5)*(1.0/(cosh(props(5)*STATEV(10*NSPLTL+1)/(props(7)-props(6)))))**2.0
      Hab=props(8)*Haa
C*****计算A(NSLPTL,6)
      Do I=1,NSLPTL
      	A(I,1)=2.0*(omage(I,1)*stressOld(nblock,4)+omage(I,3)*stressOld(nblock,6)+EG*mu(I,1))
      	A(I,2)=2.0*(-omage(I,1)*stressOld(nblock,4)+omage(I,2)*stressOld(nblock,5)+EG*mu(I,2))
      	A(I,3)=2.0*(-omage(I,3)*stressOld(nblock,6)-omage(I,2)*stressOld(nblock,5)+EG*mu(I,3))
      	A(I,4)=2.0*EG*mu(I,4)+omage(I,1)*stressOld(nblock,2)+omage(I,3)*stressOld(nblock,5)
     1 	  -omage(I,1)*stressOld(nblock,1)+omage(I,2)*stressOld(nblock,6)
        A(I,5)=2.0*EG*mu(I,5)-omage(I,1)*stressOld(nblock,6)+omage(I,2)*stressOld(nblock,3)
     1 	  -omage(I,3)*stressOld(nblock,4)-omage(I,2)*stressOld(nblock,2)
        A(I,6)=2.0*EG*mu(I,6)+omage(I,1)*stressOld(nblock,5)+omage(I,3)*stressOld(nblock,3)
     1 	  -omage(I,3)*stressOld(nblock,1)-omage(I,2)*stressOld(nblock,4)
      End Do
C*****计算偏应变
	  strainIncV=0.0  !体积应变
      Do I=1,ndir
      	strainIncV=strainIncV+strainInc(nblock,I)
      End Do
      Do I=1,ndir
      	strainIncD(I)=strainInc(nblock,I)-strainIncV
      End Do
      Do I=1+ndir,ndir+nshr
      	strainIncD(I)=strainInc(nblock,I)
      End Do
      
      
C*****组装AA(NSLPTL,NSLPTL)Y(NSLPTL)
      Do I=1,NSLPTL
      	Y(I)=0.0
      	Do K=1,3
      		Y(I)=Y(I)+A(I,K)*strainIncD(K)
      	End Do
      	Do K=4,6
      		Y(I)=Y(I)+2.0*A(I,K)*strainIncD(K)
      	End Do
      	Y(I)=dtArray(1)*STATEV(NSLPTL+I)+DgammaDtau(I)*Y(I)
      	Do J=1,NSLPTL
      		AA(I,J)=0.0
      		Do K=1,3
      			AA(I,J)=AA(I,J)+A(I,K)*mu(J,K)
      		End Do
      		Do K=4,6
      			AA(I,J)=AA(I,J)+2.0*A(I,K)*mu(J,K)
      		End Do
      		If (I .EQ. J) Then
      			AA(I,I)=1.0+DgammaDtau(I)*AA(I,J)-DgammaDg(I)*Haa*SIGN(1.0,STATEV(2*NSLPTL+I))
      		Else
      			AA(I,J)=DgammaDtau(I)*AA(I,J)-DgammaDg(I)*Hab*SIGN(1.0,STATEV(2*NSLPTL+I))
      		End If
      	End Do
      End Do
C*****求解Dgamma
      Call matInv(AA,NSLPTL,Det)
      Dgamma=matmul(AA,Y)

6. 应力更新

黄老师umat中的式(3.2.4):
Δ σ i j = L i j k l Δ ε k l − σ i j Δ ε k k − ∑ α [ L i j k l μ k l ( α ) + ω i k ( α ) σ j k + ω j k ( α ) σ i k ] ⋅ Δ γ ( α ) \Delta\sigma_{ij}=L_{ijkl}\Delta\varepsilon_{kl}-\sigma_{ij}\Delta\varepsilon_{kk}-\sum_\alpha \left[L_{ijkl}\mu^{(\alpha)}_{kl}+\omega^{(\alpha)}_{ik}\sigma_{jk}+\omega^{(\alpha)}_{jk}\sigma_{ik}\right]\cdot\Delta\gamma^{(\alpha)} Δσij=LijklΔεklσijΔεkkα[Lijklμkl(α)+ωik(α)σjk+ωjk(α)σik]Δγ(α)
改写:
Δ σ I = 2 G Δ ε I − ∑ α A I ( α ) ⋅ Δ γ ( α ) \Delta\sigma_{I}=2G\Delta\varepsilon_{I}-\sum_\alpha A^{(\alpha)}_{I}\cdot\Delta\gamma^{(\alpha)} ΔσI=2GΔεIαAI(α)Δγ(α)
叠加体应力:
Δ σ I = Δ σ I + E 3 ( 1 − 2 μ ) Δ ε V I = 1 , N D I \Delta\sigma_{I}=\Delta\sigma_{I}+\frac{E}{3(1-2\mu)}\Delta \varepsilon_V \qquad I=1,\mathrm{NDI} ΔσI=ΔσI+3(12μ)EΔεVI=1,NDI

      Do I=1,6
      	stressP=0.0
      	Do J=1,NSLPTL
      		stressP=stressP+A(J,I)*Dgamma(J)
      	End Do
      	stressNew(nblock,I)=stressOld(nblock,I)+2.0*G*strainIncD(I)-stressP
      End Do
      Do I=1,3
      	stressNew(nblock,I)=stressNew(nblock,I)+(props(1)/(3.0*(1.0-2.0*props(2))))*strainIncV
      End Do

7. 更新状态变量

整理一下用到的状态变量:

状态变量序号
滑移系的当前强度 g ( α ) g^{(\alpha)} g(α)STATE(1)~STATE(NSLPTL)
滑移率 γ ˙ α \dot\gamma^{\alpha} γ˙αSTATE(NSLPTL+1)~STATE(2*NSLPTL)
当前的分切应力 τ ( α ) \tau^{(\alpha)} τ(α)STATE(2*NSLPTL+1)~STATE(3*NSLPTL)
滑移面法向 m m mSTATE(3*NSLPTL+1)~STATE(6*NSLPTL)
滑移方向 s s sSTATE(6*NSLPTL+1)~STATE(9*NSLPTL)
累积滑移量 ∑ ∣ Δ γ ( α ) ∣ \sum\begin{vmatrix}\Delta\gamma^{(\alpha)}\end{vmatrix} Δγ(α)STATE(9*NSLPTL+1)~STATE(10*NSLPTL)
Taylor累积滑移量 ∑ ∣ Δ γ ∣ \sum\begin{vmatrix}\Delta\gamma\end{vmatrix} ΔγSTATE(10*NSLPTL+1)

滑移系的当前强度 g ( α ) g^{(\alpha)} g(α) 更新:
Δ g ( α ) = ∑ β h α β Δ γ ( β ) \Delta g^{(\alpha)}=\sum_\beta h_{\alpha\beta}\Delta\gamma^{(\beta)} Δg(α)=βhαβΔγ(β)

      Do I=1,NSLPTL
      	Do J=1,NSLPTL
      		If (I .EQ. J) Then
      			StaveNew(I)=StaveOld(I)+Haa*Dgamma(J)
      		Else
      			StaveNew(I)=StaveOld(I)+Hab*Dgamma(J)
      		End If
      	End Do
      End Do

滑移率 γ ˙ α \dot\gamma^{\alpha} γ˙α 更新 γ ˙ α = Δ γ ( α ) Δ t \dot\gamma^{\alpha}=\Large \frac{\Delta \gamma^{(\alpha)}}{\Delta t} γ˙α=ΔtΔγ(α):

      Do I=1,NSLPTL
      	StaveNew(NSLPTL+I)=Dgamma(I)/dtArray(1)
      End Do

分切应力 τ ( α ) \tau^{(\alpha)} τ(α) 更新:
Δ τ ( α ) = [ L i j k l μ k l ( α ) + ω i k ( α ) σ j k + ω j k ( α ) σ i k ] : [ Δ ε i j − ∑ β μ i j ( β ) Δ γ ( β ) ] \Delta\tau^{(\alpha)}=\left[L_{ijkl}\mu^{(\alpha)}_{kl}+\omega^{(\alpha)}_{ik}\sigma_{jk}+\omega^{(\alpha)}_{jk}\sigma_{ik}\right]:\left[\Delta \varepsilon_{ij}-\sum_\beta\mu_{ij}^{(\beta)}\Delta\gamma^{(\beta)}\right] Δτ(α)=[Lijklμkl(α)+ωik(α)σjk+ωjk(α)σik]:Δεijβμij(β)Δγ(β)
改写:
Δ τ ( α ) = A I ( α ) ⋅ [ Δ ε I − ∑ β μ I ( β ) Δ γ ( β ) ] \Delta\tau^{(\alpha)}=A^{(\alpha)}_I \cdot\left[\Delta \varepsilon_{I}-\sum_\beta\mu_{I}^{(\beta)}\Delta\gamma^{(\beta)}\right] Δτ(α)=AI(α)ΔεIβμI(β)Δγ(β)

      Do I=1,6
      	strainIncP(I)=0.0
      	Do J=1,NSLPTL
      		strainIncP(I)=strainIncP(I)+A(J,I)*(mu(J,I)*Dgamma(J))
      	End Do
      End Do
      
      Do I=1,NSLPTL
      	DTau=0.0
      	Do J=1,6
      		Dtau=Dtau+A(I,J)*(strainIncD(J)-strainIncP(J))
      	End Do
      	StateNew(2*NSLPTL+I)=StateOld(2*NSLPTL+I)+Dtau
      End Do

更新滑移系:
Δ m i ∗ ( α ) = − m j ∗ ( α ) { Δ ε j i + Ω j i Δ t − ∑ β [ μ j i ( β ) + ω j i ( β ) ] Δ γ ( β ) } \Delta m^{*(\alpha)}_i=-m^{*(\alpha)}_j \left\{\Delta\varepsilon_{ji} +\Omega_{ji}\Delta t - \sum_\beta \left[ \mu_{ji}^{(\beta)} + \omega_{ji}^{(\beta)} \right] \Delta \gamma^{(\beta)} \right\} Δmi(α)=mj(α)Δεji+ΩjiΔtβ[μji(β)+ωji(β)]Δγ(β)

Δ s i ∗ ( α ) = { Δ ε i j + Ω i j Δ t − ∑ β [ μ i j ( β ) + ω i j ( β ) ] Δ γ ( β ) } s j ∗ ( α ) \Delta s^{*(\alpha)}_i=\left\{\Delta\varepsilon_{ij} +\Omega_{ij}\Delta t - \sum_\beta \left[ \mu_{ij}^{(\beta)} + \omega_{ij}^{(\beta)} \right] \Delta \gamma^{(\beta)} \right\}s^{*(\alpha)}_j Δsi(α)=Δεij+ΩijΔtβ[μij(β)+ωij(β)]Δγ(β)sj(α)

设: B ( 3 , 3 ) = Δ ε i j + Ω i j Δ t − ∑ β [ μ i j ( β ) + ω i j ( β ) ] Δ γ ( β ) B(3,3)=\Delta\varepsilon_{ij} +\Omega_{ij}\Delta t - \sum_\beta \left[ \mu_{ij}^{(\beta)} + \omega_{ij}^{(\beta)} \right] \Delta \gamma^{(\beta)} B(3,3)=Δεij+ΩijΔtβ[μij(β)+ωij(β)]Δγ(β)
首先:
B = [ Δ ε 1 Δ ε 4 Δ ε 6 Δ ε 4 Δ ε 2 Δ ε 5 Δ ε 6 Δ ε 5 Δ ε 3 ] + [ Ω 11 Ω 12 Ω 13 Ω 21 Ω 22 Ω 23 Ω 31 Ω 32 Ω 33 ] Δ t B=\left[\begin{matrix} \Delta\varepsilon_{1} & \Delta\varepsilon_{4} & \Delta\varepsilon_{6} \\ \Delta\varepsilon_{4} & \Delta\varepsilon_{2} & \Delta\varepsilon_{5} \\ \Delta\varepsilon_{6} & \Delta\varepsilon_{5} & \Delta\varepsilon_{3} \end{matrix} \right] +\left[\begin{matrix} \Omega_{11} &\Omega_{12} & \Omega_{13} \\ \Omega_{21} &\Omega_{22} &\Omega_{23} \\ \Omega_{31} & \Omega_{32} &\Omega_{33} \end{matrix} \right]\Delta t B=Δε1Δε4Δε6Δε4Δε2Δε5Δε6Δε5Δε3+Ω11Ω21Ω31Ω12Ω22Ω32Ω13Ω23Ω33Δt
然后:
B = B − ∑ β [ μ 1 ( β ) μ 4 ( β ) + ω 1 ( β ) μ 6 ( β ) + ω 3 ( β ) μ 4 ( β ) − ω 1 ( β ) μ 2 ( β ) μ 5 ( β ) + ω 2 ( β ) μ 6 ( β ) − ω 3 ( β ) μ 5 ( β ) − ω 2 ( β ) μ 3 ( β ) ] Δ γ ( β ) B=B-\sum_\beta \left[ \begin{matrix} \mu_{1}^{(\beta)} & \mu_{4}^{(\beta)} +\omega_1^{(\beta)} & \mu_{6} ^{(\beta)} +\omega_3^{(\beta)} \\ \mu_{4}^{(\beta)} -\omega_1^{(\beta)} & \mu_{2}^{(\beta)} & \mu_{5}^{(\beta)} +\omega_2^{(\beta)} \\ \mu_{6}^{(\beta)} -\omega_3^{(\beta)} & \mu_{5}^{(\beta)} -\omega_2^{(\beta)} & \mu_{3}^{(\beta)} \end{matrix} \right] \Delta \gamma^{(\beta)} B=Bβμ1(β)μ4(β)ω1(β)μ6(β)ω3(β)μ4(β)+ω1(β)μ2(β)μ5(β)ω2(β)μ6(β)+ω3(β)μ5(β)+ω2(β)μ3(β)Δγ(β)

      Do I=1,3
      	B(I,J)=strainIncD(I)+DSPIN(I,I)
      End Do
      B(1,2)=strainIncD(4)+DSPIN(1,2)
      B(2,3)=strainIncD(5)+DSPIN(2,3)
      B(3,1)=strainIncD(6)+DSPIN(3,1)
      B(2,1)=strainIncD(4)+DSPIN(2,1)
      B(3,2)=strainIncD(5)+DSPIN(3,2)
      B(1,3)=strainIncD(6)+DSPIN(1,3)
      
      Do K=1,NSLPTL
	      Do I=1,3
	      	B(I,J)=B(I,J)-Dgamma(K)*mu(K,1)
	      End Do
	      B(1,2)=B(1,2)-Dgamma(K)*(mu(K,4)+omega(K,1))
	      B(2,3)=B(2,3)-Dgamma(K)*(mu(K,5)+omega(K,2))
	      B(3,1)=B(3,1)-Dgamma(K)*(mu(K,6)-omega(K,3))
	      B(2,1)=B(2,1)-Dgamma(K)*(mu(K,4)-omega(K,1))
	      B(3,2)=B(3,2)-Dgamma(K)*(mu(K,5)-omega(K,2))
	      B(1,3)=B(1,3)-Dgamma(K)*(mu(K,6)+omega(K,3))
      End Do
      Do K=1,NSLPTL
      	Do I=1,3
	      	Term1(I)=StateOld(3*(NSLPTL-1+K)+I)
	    End Do
	    Term2=matmul(Term1,B)
	    Do I=1,3
	    	StateNew(3*(NSLPTL-1+K)+I)=StateOld(3*(NSLPTL-1+K)+I)-Term2(I)
	    End Do
	    Do I=1,3
	      	Term1(I)=StateOld(6*(NSLPTL-1+K)+I)
	    End Do
	    Term2=matmul(B,Term1)
	    Do I=1,3
	    	StateNew(6*(NSLPTL-1+K)+I)=StateOld(6*(NSLPTL-1+K)+I)+Term2(I)
	    End Do
	  End Do

更新每个滑移系的累积滑移量 ∑ ∣ Δ γ ( α ) ∣ \sum\begin{vmatrix}\Delta\gamma^{(\alpha)}\end{vmatrix} Δγ(α) STATE(9*NSLPTL+1)~STATE(10*NSLPTL)和更新Taylor累积滑移量 ∑ ∣ Δ γ ∣ \sum\begin{vmatrix}\Delta\gamma\end{vmatrix} Δγ STATE(10*NSLPTL+1)

	  StateNew(10*NSLPTL+1)=0.0
      Do I=1,NSLPTL
      	StateNew(9*NSLPTL+I)=StateOld(9*NSLPTL+I)+Abs(Dgamma(I))
      	StateNew(10*NSLPTL+1)=StateNew(10*NSLPTL+1)+Abs(Dgamma(I))
      End Do
      StateNew(10*NSLPTL+1)=StateOld(10*NSLPTL+1)+StateNew(10*NSLPTL+1)

8.材料参数

材料参数序号
弹性模量 E E Eprops(1)
泊松比 μ \mu μprops(2)
参考滑移率 a ˙ \dot a a˙props(3)
滑移率硬化指数 n n nprops(4)
参考滑移硬化率 h 0 h_0 h0props(5)
屈服剪切应力 τ 0 \tau_0 τ0props(6)
突破剪切应力 τ s \tau_s τsprops(7)
潜硬化系数 q q qprops(8)
向前插值系数 θ \theta θprops(9)
初始欧拉角 φ 1 \varphi_1 φ1props(10)
初始欧拉角 Φ \Phi Φprops(11)
初始欧拉角 φ 2 \varphi_2 φ2props(12)

求出各个滑移系的滑移量 Δ γ ( α ) \Delta \gamma^{(\alpha)} Δγ(α) Dgamma,计算出塑性应变增量 Δ ε P \Delta \varepsilon^P ΔεP strainIncP(6)和塑性变形梯度增量 L P Δ t L^P \Delta t LPΔtdefgradP (9)

Δ ε P = ∑ β μ i j ( β ) Δ γ ( β ) \Delta \varepsilon^P=\sum_\beta\mu_{ij}^{(\beta)}\Delta\gamma^{(\beta)} ΔεP=βμij(β)Δγ(β)

C****计算塑性应变增量
     Do I=1,6
       strainInP(I)=0.0
       Do J=1,NSLPTL
         strainInP(I)=strainInP(I)+mu(J,I)*Dgamma(J)
       End Do
     End Do

L P Δ t = ∑ β [ μ i j ( β ) + ω i j ( β ) ] Δ γ ( β ) L^P\Delta t=\sum_\beta \left[ \mu_{ij}^{(\beta)} + \omega_{ij}^{(\beta)} \right] \Delta \gamma^{(\beta)} LPΔt=β[μij(β)+ωij(β)]Δγ(β)

C****计算变形梯度增量
     Do I=1,3
        defgradP(I)=strainInP(I)
     End Do
     defgradP(4)=strainInP(4)
     defgradP(7)=defgradP(7)
     Do I=1,NSLPTL
        defgradP(4)=defgradP(4)+omega(I,1)*Dgamma(I)
        defgradP(7)=defgradP(7)-omega(I,1)*Dgamma(I)
     End Do
     defgradP(5)=strainInP(5)
     defgradP(8)=defgradP(8)
     Do I=1,NSLPTL
        defgradP(5)=defgradP(5)+omega(I,2)*Dgamma(I)
        defgradP(8)=defgradP(8)-omega(I,2)*Dgamma(I)
     End Do
     defgradP(6)=strainInP(6)
     defgradP(9)=defgradP(9)
     Do I=1,NSLPTL
        defgradP(9)=defgradP(9)+omega(I,3)*Dgamma(I)
        defgradP(6)=defgradP(6)-omega(I,3)*Dgamma(I)
     End Do
     
Abaqus-7.96是一种常用的有限元分析软件。有限元分析是通过将连续物体分割成有限尺寸的单元,利用单元的力学性质进行计算和分析的一种方法。Abaqus-7.96通过对实际问题进行数值模拟,可以解决结构力学、热力学、电磁学、流体力学等多个领域的问题。它可以用来研究材料的强度、刚度、振动特性以及各种物理场的分布等问题。 Abaqus-7.96拥有一系列功能强大的工具和模块,包括建模工具、材料模型、加载和边界条件设置、求解器、后处理等。通过建模工具,用户可以直观地创建物体的几何形状,并进行材料属性的定义;材料模型可以模拟各种材料的力学行为,如弹性、塑性、粘弹性等;加载和边界条件设置允许用户设定物体的外部力和约束条件;求解器是Abaqus-7.96的核心,通过数值计算方法对模型进行求解;后处理模块可以生成分析结果的可视化图形、动画和报告。 Abaqus-7.96还提供了用户友好的界面和丰富的文档和教程,使得用户能够快速上手并进行分析。同时,它还支持多种程序语言的接口,方便用户进行自定义开发和扩展。除此之外,Abaqus-7.96还具有高度的计算效率和可靠性,适用于各种规模的问题。 总之,Abaqus-7.96是一个功能强大、灵活且易于使用的有限元分析软件,广泛应用于工程、科学研究和设计等领域,为用户提供了丰富的工具和模块来解决复杂的工程和科学问题。
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值