- 博客(68)
- 收藏
- 关注
原创 基于深度学习的交通事故检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
本文介绍了一种基于YOLO算法的交通事故检测系统,该系统可实时检测图片、视频和摄像头画面中的交通事故,并区分事故严重程度。系统采用三栏界面设计,支持多模型切换、检测结果保存与导出,并配有语音播报功能。技术栈包括Python3.10、PyQt5、SQLite和YOLO系列模型。实验表明,YOLO12n模型在精度上表现最佳(mAP40.6%),而YOLO11n在速度上最优(56.1ms)。系统还提供模型训练脚本,支持用户自定义数据集训练,适用于智慧交通等场景。
2026-01-16 10:05:28
136
原创 基于YOLO算法的火焰烟雾检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
本文介绍了一种基于YOLO算法的火焰烟雾检测系统。该系统通过YOLOv5/v8/v11/v12模型实现高精度实时检测,具有多模态输入、参数调节、语音播报和数据导出等功能。系统采用PyQt5界面和SQLite数据库,支持用户登录、模型切换和训练脚本。测试结果显示YOLO12n模型精度最高(mAP40.6%),YOLO11n速度最优(56.1ms)。该系统可广泛应用于火灾预警、工业监测等领域,实现了安全监测与效率提升的综合解决方案。
2026-01-15 10:02:42
402
原创 基于深度学习的绝缘子检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
本文介绍了一套基于YOLO算法的绝缘子智能检测系统。该系统通过YOLOv5/v8/v11/v12等轻量化模型实现毫秒级绝缘子缺陷识别,支持图片/视频/摄像头等多源输入,具备双阈值调节、可视化标注、语音告警等功能。系统采用PyQt5开发界面,支持多模型切换、结果保存导出。技术分析显示,YOLO12n模型表现最优(mAP40.6%),YOLO11n速度最快(56.1ms)。训练结果显示系统准确率达96.7%(mAP@0.5),F1值0.95,显著提升了电力巡检效率和缺陷检出率。
2026-01-14 10:45:17
580
原创 基于深度学习的考试作弊检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
摘要:本文介绍了一个基于YOLO算法的考试作弊智能检测系统。该系统通过深度学习技术实现考场作弊行为的自动识别,支持图片、视频、文件夹批量处理及实时监控,具备用户管理、结果导出和语音播报功能。系统采用PyQt5界面,SQLite数据库,并对比分析了YOLOv5/v8/v11/v12四种模型的性能(YOLO12n精度最高达40.6%mAP)。训练数据集包含13000张图片,最终模型在IoU=0.5时mAP达到89%。该系统为考场监控提供了高效智能的解决方案。
2026-01-13 10:05:41
588
原创 基于深度学习的纺织品缺陷检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
本文介绍了一套基于YOLO算法的纺织品缺陷智能检测系统。该系统通过深度学习技术,可精准识别破洞、织线瑕疵等缺陷,支持图片、视频、实时摄像头等多种检测方式,并提供可视化界面、结果导出等功能。系统采用PyQt5开发前端,支持多模型切换(YOLOv5/v8/v11/v12),其中YOLO12n模型精度最高(mAP40.6%),YOLO11n速度最优(56.1ms)。文章详细演示了用户界面操作流程,并分享了模型训练核心代码,实现了从数据集准备到模型生成的全流程自动化。该系统有效解决了传统人工质检效率低、漏检率高的问
2026-01-12 10:13:18
714
原创 基于深度学习的驾驶行为检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
摘要:本文介绍了一套基于YOLO算法的驾驶行为检测系统,采用计算机视觉技术实时识别驾驶员分心、异常姿态等行为。系统具备三区布局界面,支持图片/视频/摄像头多模态检测,并集成语音播报、数据统计和结果导出功能。技术栈采用Python+PyQt5+SQLite,对比分析了YOLOv5/v8/v11/v12模型的性能差异,其中YOLO12n以40.6%mAP精度最优,YOLO11n以56.1ms推理速度最快。系统训练数据包含15类驾驶行为,最终模型在0.5IoU阈值下达到97.4%的mAP准确率。
2026-01-10 17:56:20
588
原创 基于深度学习的多种类动物识别系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
本文介绍了一个基于YOLO算法的多种类动物检测识别系统。系统实现了50多种动物的精准识别,具有模块化GUI界面,支持多源输入、模型切换、实时调节和数据可视化。核心功能包括用户管理、多模态检测、结果保存等。通过对比YOLOv5/YOLOv8/YOLOv11/YOLOv12模型,YOLO12n在精度上表现最优(mAP40.6%),YOLO11n在速度上最快(56.1ms)。系统使用19000张图片的数据集训练,最终mAP@0.5达到84.2%,F1值0.79。源码可通过指定链接获取。
2026-01-08 19:56:27
549
原创 基于深度学习的夜间物体检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
本文介绍了一个基于YOLO算法的夜间物体检测系统,该系统通过深度学习技术优化了在光线不足环境下的物体识别性能。系统具备多模态检测能力,支持图片、视频和实时摄像头输入,并提供可视化界面、语音播报和数据统计功能。文章详细展示了系统架构、用户界面和核心训练代码,并对YOLOv5/YOLOv8/YOLOv11/YOLOv12模型性能进行了对比分析,其中YOLO12n在mAP指标上表现最优。该系统使用Python3.10开发,采用PyQt5前端和SQLite数据库,训练数据集包含17000张夜间场景图片,最终实现了7
2026-01-08 09:13:52
950
原创 基于深度学习的车型识别系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
本文介绍了一款基于YOLO算法的车型识别系统,支持轿车、卡车、公共汽车和摩托车等多种车型识别。系统具备图片、视频、摄像头实时检测及批量处理功能,集成语音播报、结果导出等实用模块,并提供用户登录和模型训练功能。技术栈采用Python 3.10、PyQt5和SQLite,支持YOLOv5至v12多模型切换。测试数据显示,YOLO12n模型以40.6%的mAP表现最优,YOLO11n在CPU推理速度最快(56.1ms)。系统训练数据集包含19,000张图片,mAP@0.5达到70.8%,F1值为0.67,识别效果
2026-01-07 09:00:28
824
原创 基于深度学习的汽车自动驾驶目标检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
本文提出基于YOLO深度学习算法的铁轨缺陷检测系统,通过构建专用数据集训练模型,并开发图形化界面实现自动化检测。系统支持图片、视频、摄像头及批量检测,具备实时显示、语音报警、数据导出等功能。对比YOLOv5/v8/v11/v12模型,YOLO12n精度最高(mAP40.6%),YOLO11n速度最优(56.1ms)。训练结果显示综合mAP@0.5达88.6%,F1值0.85,验证了系统的高效性。该系统为铁路巡检提供了智能化解决方案。
2026-01-04 18:20:04
545
原创 基于深度学习的杂草检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
本文介绍了一套基于YOLO算法的杂草检测系统,支持图片、视频及实时视频流的多模态检测。系统具备模型管理、结果导出、参数调节、语音提醒等功能,采用YOLOv5/v8/v11/v12等模型进行训练,在4000张农田影像数据集上实现了87.5%的mAP@0.5准确率。其中YOLO12n模型表现最优(mAP40.6%),YOLO11n推理速度最快(56.1ms)。系统提供完整的训练脚本和跨平台部署方案,可应用于精准农业中的杂草识别与自动化除草场景。
2025-12-31 20:14:45
858
原创 基于深度学习的轮船分类检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
本文设计并实现了一套基于YOLO算法的轮船分类检测系统,支持图片、视频及实时视频流的多类别船舶检测。系统具备多源检测、模型管理、结果保存、参数调节等功能,采用YOLOv5/v8/v11/v12系列模型,经测试YOLO12n精度最高(mAP40.6%),YOLO11n速度最优(56.1ms)。基于4000张船舶图像训练,系统在mAP@0.5达到93%,F1值0.90,可广泛应用于港口监控、海事巡逻等场景。系统采用Python开发,前端使用PyQt5,支持模型训练与跨平台部署。
2025-12-31 13:01:47
1001
原创 基于深度学习的X光骨折检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
本文介绍了一套基于YOLO算法的X光骨折检测系统,旨在解决传统人工阅片效率低、一致性差的问题。系统支持图片、视频及实时摄像头检测,提供可视化交互界面、批量处理、结果导出等功能。通过对比YOLOv5/v8/v11/v12等模型,发现YOLO12n精度最高(mAP40.6%),YOLO11n速度最快(56.1ms)。系统采用Python3.10+PyQt5+SQLite技术栈,训练数据集包含22,000张X光影像,实验结果显示mAP@0.5达97.0%,F1值0.95,具备良好的临床应用价值。
2025-12-30 20:05:32
984
原创 基于深度学习的水面垃圾检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
本文介绍了一个基于YOLO算法的水面垃圾检测系统,该系统具备垃圾识别分类、多模态检测和模型训练功能。系统采用PyQt5开发界面,支持图片/视频/实时摄像头检测,检测结果可标注保存。内置YOLOv5/v8/v11/v12模型对比显示,YOLO12n精度最高(mAP40.6%),YOLO11n速度最优(56.1ms)。系统提供完整的训练脚本,支持数据路径自动修正和批量模型训练,在2500张图片的数据集上达到95.7%的mAP@0.5准确率。该系统适用于水面清洁监测及相关计算机视觉项目。
2025-12-26 08:52:19
972
原创 基于深度学习的学生上课行为检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
本文介绍了一套基于YOLO深度学习算法的学生上课行为检测系统。该系统能自动识别低头、使用手机、举手等12种课堂行为,支持图片、视频和实时摄像头检测,检测结果可标注保存并导出Excel报表。系统采用PyQt5开发界面,支持多模型切换,包含用户管理和模型训练功能。实验对比显示,YOLO12n模型在3700张训练集上达到74.7%的mAP@0.5准确率,优于其他版本。该系统将传统课堂观察转化为量化分析,为智慧教育提供智能化解决方案。
2025-12-25 09:05:06
556
原创 基于深度学习的安检危险品检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
摘要:本文介绍了一个基于YOLO算法的智能安检危险品检测系统。该系统采用三栏式界面设计,支持图片、视频及实时摄像头检测,可识别枪支、刀具等危险品,检测结果可标注保存并导出Excel。系统内置YOLOv5/v8/v11/v12多种模型,其中YOLO12n精度最高(mAP40.6%),YOLO11n速度最快(56.1ms)。通过7000张训练数据,系统在IoU阈值为0.5时达到90.6%的mAP准确率。项目采用Python3.10+PyQt5技术栈,提供完整的训练脚本和用户管理功能,实现安检流程的智能化升级。
2025-12-23 21:48:04
817
原创 基于深度学习的水下海洋生物检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
本文介绍了一个基于YOLO算法的水下海洋生物识别系统,该系统具有以下特点:1)采用三栏式交互界面,支持图片、视频、摄像头等多种检测模式;2)具备多模型切换功能,内置YOLOv5/v8/v11/v12等模型,其中YOLO12n精度最高(mAP40.6%),YOLO11n速度最快(56.1ms);3)提供完整的数据处理流程,包括1700张图片的数据集、训练可视化及结果导出功能;4)集成用户管理系统,支持注册登录、信息修改等操作。系统通过Python3.10+PyQt5+SQLite技术栈实现,可满足水下生物识别
2025-12-22 17:02:08
945
原创 基于深度学习的螺栓螺母检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
摘要:本视频演示了一个基于YOLO系列深度学习模型的螺栓螺母检测系统。系统采用PyQt5开发用户界面,支持多模态检测(图片/视频/实时摄像头)和多模型切换(YOLOv5/v8/v11/v12)。通过对比实验显示,YOLO12n模型达到最高40.6%mAP精度,YOLO11n实现最快56ms推理速度。系统提供完整的训练脚本,支持100轮次批量训练,最终在测试集上取得97.3%的mAP@0.5高准确率。该系统可有效解决工业场景中小零件检测的难题,提升质检效率。
2025-12-20 21:12:22
547
原创 基于深度学习的非机动车头盔检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
本文介绍了一个基于YOLO算法的非机动车头盔检测系统,通过深度学习技术实现骑行安全监测。系统采用PyQt5前端界面和SQLite数据库,支持图片、视频及实时摄像头的多模态检测,具备模型切换、参数调节和结果统计功能。核心代码展示了YOLO模型批量训练工具,支持自动路径修正和多模型训练对比。实验数据显示,YOLO12n模型在mAP@0.5达到95.2%,综合F1值0.92,显著优于其他版本。该系统实现了从检测到模型训练的全流程解决方案,为城市骑行安全提供了有效的技术保障。
2025-12-19 21:20:16
587
原创 基于深度学习的水果品质检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
本文介绍了一种基于YOLO系列深度学习算法的水果品质检测系统。该系统可自动识别多种水果(如草莓、香蕉等)及其变质程度(优质、轻微变质、腐烂),使用超过21,000张图片的数据集训练,在YOLOv5、v8、v11和v12等多个模型版本中实现高精度检测。系统采用三栏式用户界面,支持图片、视频、摄像头等多种检测方式,并具备模型切换、参数调整等功能。性能测试显示YOLO12n模型达到最佳检测精度(mAP40.6%),而YOLO11n在速度上表现最优(CPU推理56.1ms)。该系统有效解决了传统人工检测效率低、主观
2025-12-18 20:14:30
832
原创 基于深度学习的水果检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
本文介绍了一个基于YOLO系列模型的水果检测系统,支持图片、视频及实时摄像头输入的多模态检测。系统采用PyQt5开发交互界面,提供用户登录、模型切换、结果统计等功能,并内置YOLOv5/v8/v11/v12四种模型对比测试。技术分析显示,YOLO12n模型以40.6% mAP值表现最优,YOLO11n在CPU推理速度上领先42%。系统还提供模型训练工具,支持自动路径修正和批量训练,在35类水果数据集上达到96.5%的mAP@0.5准确率。该方案在检测精度、速度和用户体验间取得平衡,适用于农业分拣、智能零售等
2025-12-17 16:38:46
588
原创 基于深度学习的肾结石检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
本文介绍了基于YOLO目标检测算法开发的肾结石检测系统。该系统支持图片、视频、文件夹批量及摄像头实时检测,包含用户登录、多模型切换等功能。技术栈采用Python3.10、PyQt5和SQLite,对比了YOLOv5/v8/v11/v12四种模型性能,其中YOLO12n精度最高(mAP40.6%),YOLO11n速度最快(56.1ms)。系统在17000张肾脏影像数据集上训练,mAP@0.5达90%,F1值0.86,能有效识别肾结石位置并显示置信度。
2025-12-16 16:32:45
987
原创 基于深度学习的反光衣检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
本研究基于YOLO算法开发了一套反光衣智能检测系统,支持图片、视频和实时摄像头的多模态检测。系统采用PyQt5界面设计,提供用户管理、模型切换和参数调整功能。通过对比YOLOv5/v8/v11/v12等模型性能,发现YOLO12n在精度(mAP 40.6%)和效率(6.5B FLOPs)上表现最优。测试显示系统在置信度0.67时F1值达0.96,mAP@0.5达98.2%,适用于工地、道路等场景的安全监管。
2025-12-15 21:13:27
804
原创 基于深度学习的木薯病害检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
本文介绍了一种基于YOLO算法的木薯病害智能检测系统。该系统采用深度学习技术,可自动识别木薯褐斑病、褐条病等5种病害,支持图片、视频及实时摄像头检测。系统提供交互式界面,支持多模型切换(YOLOv5/v8/v11/v12)和参数调整,其中YOLO12n模型表现最优(mAP@0.5达89.5%)。核心代码展示了批量训练功能,可自动处理数据集路径并加载预训练模型。系统采用Python3.10+PyQt5+SQLite技术栈,具有高精度(F1值0.86)、高效率(YOLO11n推理仅56.1ms)的特点,为农业病
2025-12-13 23:19:45
802
原创 基于深度学习的无人机视角检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
本研究设计了一套基于YOLO算法的无人机视觉小目标检测系统,针对无人机航拍图像中小目标检测的难点,对比了YOLOv5、YOLOv8、YOLOv11和YOLOv12四种模型的性能。系统提供用户管理、多模型切换、实时检测等功能,测试结果显示YOLO12n模型mAP最高达40.6%,YOLO11n推理速度最快(56.1ms)。该系统支持图片、视频等多种输入方式,为无人机小目标检测提供了实用解决方案。
2025-12-12 19:36:17
838
原创 基于深度学习的遥感地面物体检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
本文实现了一套基于YOLO系列的遥感地面物体检测系统,集成YOLOv5/v8/v11/v12四种模型,支持多模型横向对比与快速切换。系统采用PyQt5构建桌面应用,具备图片/视频/实时摄像头检测功能,提供交互式参数调节和结果分析。通过SQLite实现用户管理,配套训练脚本支持批量自动化训练。实验表明,YOLO12n在精度(mAP40.6%)和效率(6.5B FLOPs)上表现最优,YOLO11n推理速度最快(56.1ms)。系统在11类遥感目标检测任务中取得mAP@0.5达84.9%的优异性能,为遥感智能解
2025-12-11 15:25:21
757
1
原创 基于深度学习的田间杂草检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
本文实现了一套基于YOLO的田间杂草智能检测系统,集成YOLOv5/v8/v11/v12四种模型进行对比分析。系统采用PyQt5开发桌面应用,支持图片/视频/摄像头多模态检测,具备置信度调节、实时统计等交互功能。基于18074张图片的数据集测试显示,YOLO12n模型表现最优(mAP40.6%),YOLO11n推理速度最快(56.1ms)。系统实现了从数据准备、模型训练到推理部署的全流程,为农业智能化管理提供了一体化解决方案,在测试集上达到93.6%的检测准确率。
2025-12-10 15:47:28
682
原创 基于深度学习的船舶检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
本文实现了一套基于YOLO系列模型的船舶检测系统,集成YOLOv5/v8/v11/v12等多个版本,支持图片、视频、摄像头实时检测等多种模式。系统采用PyQt5构建桌面应用,具备用户管理、多模型切换、参数调节等功能。测试显示YOLO12n模型精度最高(mAP40.6%),YOLO11n速度最快(56.1ms)。训练数据集包含8700多张图片,模型在测试集上达到96.5%的mAP@0.5准确率。该系统为海事监管、港口调度等场景提供了一体化解决方案,兼顾精度与效率。
2025-12-09 16:23:57
623
原创 别再全屏找目标了!YOLO区域检测神器TrackZone
摘要:视频目标检测常面临信息过载问题,YOLO模型会标记画面中所有对象,导致关键信息被淹没。Ultralytics的TrackZone工具可完美解决该痛点,它通过框选感兴趣区域(ROI),仅检测特定范围内的目标。演示显示:TrackZone能有效过滤干扰,提升检测速度,特别适合违停监控、出入口统计等场景。核心代码仅需20行,配合作者开发的交互式坐标框选工具,可实现零代码ROI设定。该方案大幅降低计算量,自带目标跟踪ID,是视频分析场景的轻量化解决方案。
2025-12-08 16:36:06
355
原创 基于深度学习的苹果病害检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
本文介绍了一套基于YOLO系列算法的苹果病害智能检测系统,实现了对叶枯病、锈病等多种病害的自动化识别。系统包含交互式GUI界面、模型训练框架和命令行工具,支持图片、视频及实时检测。技术栈采用Python3.10+PyQt5+SQLite,集成YOLOv5/v8/v11/v12等模型。实验表明,YOLO12n模型精度最高(mAP40.6%),YOLO11n速度最优(56.1ms)。在12000张图片的数据集上,系统达到99.5%的mAP@0.5准确率,为智慧农业提供了高效解决方案。
2025-12-07 19:23:29
696
原创 SAM3模型来了,手把手带你运行SAM3模型代码,SAM3模型初探!
Meta开源SAM3图像分割模型,支持文本提示精准分割目标。本文提供Windows本地部署详细教程,包含环境配置、依赖安装、权重下载等完整步骤,并解决triton缺失和权重访问等常见问题。通过修改源码加载本地权重文件sam3.pt,即可实现文本提示分割功能。教程附带测试代码示例,支持自定义文本提示词进行目标分割。作者还提供了后续进阶玩法预告,包括视频追踪等应用场景。
2025-12-06 17:51:23
1156
1
原创 基于深度学习的35种鸟类检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
本文介绍了一个基于YOLO系列算法的鸟类识别系统,支持35种鸟类的实时检测。系统采用Python3.10开发,前端界面使用PyQt5,数据库为SQLite。通过对比YOLOv5/v8/v11/v12模型性能,发现YOLO12n精度最高(mAP40.6%),YOLO11n速度最优(56.1ms)。系统功能包括多模态检测(图片/视频/摄像头)、模型切换、用户管理等,在4000张图片的数据集上训练后,mAP@0.5达到99.5%。该技术为生态监测和科普教育提供了高效工具。
2025-12-05 14:49:40
786
原创 基于深度学习的水稻虫害检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
本文介绍了一套基于YOLO深度学习算法的水稻虫害智能检测系统。该系统支持多版本模型(YOLOv5/8/11/12),可实现图片、视频及实时摄像头的虫害检测,检测精度高达96%以上。系统采用PyQt5界面,具备用户管理、多模型切换、批量处理等功能,并提供模型训练模块支持自定义训练。性能测试显示,YOLO12n模型mAP达40.6%,YOLO11n推理速度最快(56.1ms)。该系统为水稻虫害识别提供了高效精准的AI解决方案,适用于田间实时监测与批量数据处理场景。
2025-12-04 18:00:00
1686
原创 基于深度学习的西红柿成熟度检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
摘要:本文介绍了一个基于YOLO算法的西红柿成熟度智能检测系统,该系统支持YOLOv5/v8/v11/v12等多种模型,可实时识别绿熟期、转色期和成熟期的西红柿。系统采用PyQt5开发界面,支持图片、视频及摄像头输入,具备多模型切换、批量处理和模型训练功能。技术分析显示,YOLO12n模型在测试中达到最高mAP40.6%,整体识别精度达85.8%。该系统为智慧农业提供了高效的作物成熟度检测解决方案,源码可通过指定链接获取。
2025-12-03 18:00:00
1013
原创 基于深度学习的面部口罩检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
本文介绍了一套基于YOLO算法的面部口罩检测系统,该系统针对传统检测方法效率低、精度不足等问题,整合了YOLOv5/v8/v11/v12多版本模型,支持图片、视频及实时摄像头检测。系统采用模块化设计,包含用户管理、参数调节、模型训练等功能,通过可视化界面降低使用门槛。实验数据显示,YOLO12n模型mAP达40.6%,识别准确率超90%,在6500+张训练集上取得良好效果。该系统实现了"检测-管理-训练"闭环,为疫情防控提供了高效的技术支持。
2025-12-02 10:51:34
750
1
原创 基于深度学习的火焰检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
本文介绍了一款基于YOLO系列算法的火焰检测系统,旨在解决传统检测方法效率低、现有系统操作复杂等问题。系统集成YOLOv5/v8/v11/v12多版本模型,支持图片、视频及实时摄像头检测,提供可视化交互界面和参数调节功能。通过实验对比,YOLO12n精度最高(mAP40.6%),YOLO11n速度最优(56.1ms)。系统采用Python3.10开发,前端使用PyQt5,数据库为SQLite,实现了"检测-管理-训练"闭环,有效降低了技术门槛,提升了火焰检测的实用性和扩展性。
2025-12-01 15:02:43
767
1
原创 基于深度学习的PCB缺陷检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
本文介绍了一套基于YOLO系列算法的PCB缺陷智能检测系统。系统支持多模态检测(图像/视频/实时画面),能准确识别漏孔、短路等常见PCB缺陷,识别精准度高达98%-100%。通过对比YOLOv5/v8/v11/v12等模型,YOLO12n在精度(mAP40.6%)和效率上表现最优。系统采用Python+PyQt5开发,提供用户管理、模型切换等功能,有效解决了传统人工检测效率低、易漏检的问题,为PCB质检提供了智能化解决方案。
2025-11-30 18:10:05
936
1
原创 基于深度学习的安全帽检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
本文介绍了一套基于YOLO系列算法的智能安全帽检测系统。系统采用YOLOv5/v8/v11/v12等多种模型,支持图片、视频和实时摄像头的安全帽检测,具备用户管理、多模型切换等功能。通过对比实验显示,YOLO12n模型表现最优(mAP40.6%),YOLO11n速度最快(56.1ms)。系统训练数据集包含7000余张图片,最终实现安全帽识别准确率达90-93%,综合mAP@0.5达到94.6%。该系统为工业生产安全监管提供了高效可靠的智能化解决方案。
2025-11-29 21:36:48
717
原创 基于深度学习的路面坑洞检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
摘要:本文介绍了一种基于YOLO系列深度学习模型的路面坑洞检测系统。该系统采用YOLOv5/v8/v11等模型,结合PyQt5界面开发,支持图片/视频/摄像头多模态检测。系统包含用户登录、模型切换等功能模块,技术栈涵盖Python3.10、SQLite等。通过对比测试,YOLO12n模型以40.6%的mAP表现最优,YOLO11n则在实时性上领先(56.1ms)。该方案有效解决了传统人工检测效率低的问题,为道路养护提供了智能化解决方案。
2025-11-28 10:38:37
965
原创 撸一个功能强大的基于语义的图像检索系统
构建了一个支持中英文和图像检索的自定义系统。通过PyQt5开发GUI界面,集成KimiAI实现中文翻译,解决了原生框架中文支持差、界面固定等问题。系统核心功能包括:1)中文文本检索(自动翻译为英文);2)以图搜图(基于语义相似度);3)实时显示相似度最高的8张图像。演示显示系统检索速度快,文本检索耗时主要在翻译环节。视频提供了完整的代码实现方案,包括Kimi翻译API集成和PyQt5界面开发,最终实现了
2025-10-24 12:52:40
769
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅