训练Multinet踩坑记(一)

怀揣激动用原demo.py去测试一下自己刚训练好的multinet2(seg+detect).运行:

python demo_multi2.py --logdir /home/cvrsg/MultiNet/RUNS/max_steps_90000_batchsize_1/multinet2_2019_05_25_21.05/step10000 --input data/demo/um_000005.png --output_image output_image --gpus 0

报错:

.
.
.

ce (/gpu:0) -> (device: 0, name: GeForce GTX 1070, pci bus id: 0000:01:00.0)
2019-05-28 18:24:08,705 INFO /home/cvrsg/MultiNet/hypes/../RUNS/max_steps_10000_batchsize_1/multinet2_2019_05_28_01.54/model.ckpt-9999
Traceback (most recent call last):
  File "demo.py", line 426, in <module>
    tf.app.run()
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/platform/app.py", line 44, in run
    _sys.exit(main(_sys.argv[:1] + flags_passthrough))
  File "demo.py", line 329, in main
    test_constant_input(subhypes)
  File "demo.py", line 157, in test_constant_input
    road_input_conf = subhypes['road']['jitter']
KeyError: 'road'

(是关于road的错误,拍下脑门一想:肯定会报错呀,因为你训练的时候没有包含road的分类)然后把关于road相关的代码做修改,修改后的代码(demo_multi2.py)
再次运行:出现如下错误:

I tensorflow/core/common_runtime/gpu/gpu_device.cc:906] DMA: 0 
I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 0:   Y 
I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1070, pci bus id: 0000:01:00.0)
2019-05-27 23:16:59,827 ERROR 
2019-05-27 23:16:59,827 ERROR Issue with Segmentation input handling.
2019-05-27 23:16:59,827 ERROR Segmentation input will be resized during thisevaluation, but was not resized during training.
2019-05-27 23:16:59,827 ERROR This will lead to bad results.
2019-05-27 23:16:59,827 ERROR To use this script please train segmentation usingthe configuration:.
2019-05-27 23:16:59,827 ERROR 
{
    "jitter": {
    "reseize_image": true,
    "image_height" : 384,
    "image_width" : 1248,
    },
}
2019-05-27 23:16:59,827 ERROR Alternatively implement evaluation using non-resized input.

  • 训练前设置(reseize_image": true,)

WHAT???
原来训练的时候需要将seg部分:在KittiSeg.json中搜索(ctrl+F)reseize_image,默认设置的是false,改成 true并保存。
然后重新训练。

(续)
重新训练好之后(本人为了检验是否的却是上述问题,这里先跑了10000steps),我们拿之前修改过的代码测试:

(a)下载原作者训练好的权重测试效果。
(a)下载原作者训练好的权重测试效果。(b):自己训练10000steps的检测效果。
(b)自己训练10000steps的检测效果

从测试效果来看:
分割的效果几乎差不多;
检测的效果:(a)出现了误检现象,(b)则没有(开心,哈哈)。原文训练好像是14w steps,而自己只训练了10000 steps,效果就差不多了,最起码分割效果是相当了。但是检测效果还是没有14w steps 检测的准确。

如有不对,望大佬指正,轻喷。

下面是一个使用PyTorch实现二元分类网络和多元分类网络联合训练的示例代码: ```python import torch import torch.nn as nn import torch.optim as optim # 定义二元分类网络模型 class BinaryNet(nn.Module): def __init__(self): super(BinaryNet, self).__init__() self.fc1 = nn.Linear(100, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, 1) self.sigmoid = nn.Sigmoid() def forward(self, x): x = self.fc1(x) x = self.fc2(x) x = self.fc3(x) x = self.sigmoid(x) return x # 定义多元分类网络模型 class MultiNet(nn.Module): def __init__(self): super(MultiNet, self).__init__() self.fc1 = nn.Linear(100, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, 5) self.softmax = nn.Softmax(dim=1) def forward(self, x): x = self.fc1(x) x = self.fc2(x) x = self.fc3(x) x = self.softmax(x) return x # 实例化二元分类网络和多元分类网络模型 binary_net = BinaryNet() multi_net = MultiNet() # 定义损失函数和优化器 criterion = nn.BCELoss() # 二元分类使用BCELoss,多元分类使用CrossEntropyLoss optimizer = optim.SGD(list(binary_net.parameters()) + list(multi_net.parameters()), lr=0.001) # 训练模型 for epoch in range(100): for i, (input_data, binary_label, multi_label) in enumerate(train_loader): optimizer.zero_grad() binary_output = binary_net(input_data) binary_loss = criterion(binary_output, binary_label) multi_output = multi_net(input_data) multi_loss = criterion(multi_output, multi_label) total_loss = binary_loss + multi_loss total_loss.backward() optimizer.step() ``` 在这个示例代码中,我们定义了一个二元分类网络模型和一个多元分类网络模型,并使用SGD优化器和BCELoss(对于二元分类)或CrossEntropyLoss(对于多元分类)损失函数进行训练。在每个训练batch中,我们分别计算二元分类和多元分类的损失,并将二者相加作为总的损失。最后,我们在优化器的step()函数中更新模型的参数。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值