线性代数基本公式结论简要总结(5)

本文总结对称矩阵、二次型和奇异值分解等内容。

由于对称矩阵具有许多良好的性质,工程上被广泛应用。二次型和奇异值分解也是由对称矩阵具有的特殊性质推广得到的

首先不要忘了之前讲特征值时提到的对角化公式:
A=PDP1 A = P D P − 1
A具有n个线性无关的特征值,P的列空间由A的特征向量构成,D是对角线元素为A的特征值的对角矩阵

若A为对称矩阵,则其不同特征空间中(一个特征值对应的所有特征向量构成的子空间)的任意两个向量正交,即P为正交矩阵

一个方阵A可正交对角化的充要条件:A是对称矩阵

对称矩阵的谱定理:
矩阵A的特征值的集合称为A的谱。若A为n*n对称矩阵,有:
1.A有n个实数特征值(包括重复的特征值)
2.对每一个特征值,对应的特征子空间的维数等于 λ λ 作为特征方程的根的重数
3.特征空间相互正交
4.A可正交对角化

因此对于对称矩阵,有一下有趣形式的谱分解:
A=PDPT=[λ1u1...λnun][uT1...uTn]T A = P D P T = [ λ 1 u 1 . . . λ n u n ] [ u 1 T . . . u n T ] T
A=λ1u1uT1+...+λnunuTn A = λ 1 u 1 u 1 T + . . . + λ n u n u n T
即A可分解为由A的特征值作为权重的各个小部分,显然,对于 λ λ 值较小的部分,可以适当忽略,只留下一些较大特征值的加权和,而不影响原矩阵整体的特征表达

二次型:
Rn R n 上的一个二次型是一个定义在 Rn R n 上的函数,它在向量x处的值可以由表达式 Q(x)=xTAx Q ( x ) = x T A x 计算,此处A是一个n阶对称矩阵,且矩阵A成为关于二次型的矩阵

可以看到,如果矩阵A是对角矩阵,则多项式Q(x)没有交叉项,否则有交叉项。这时我们想要通过适当的变量代换消去所有的交叉项

二次型的变量代换:
如果x表示 Rn R n 中的向量变量,则变量代换是如下形式的等式:
x=Py x = P y y=P1x y = P − 1 x
其中P是可逆矩阵且y是 Rn R n 中的一个新变量,P的列可以确定 Rn R n 的一个基,y是相对于该基向量x的坐标向量。将上述等式带入原式,有:
xTAx=yT(PTAP)y x T A x = y T ( P T A P ) y
从而新的二次型矩阵为 PTAP P T A P ,由于A是对称矩阵,因此存在正交矩阵P,使得 PTAP P T A P 为对角矩阵D(对角元素为A的特征值):
xTAx=yTDy x T A x = y T D y
这样一来,就消除了原来多项式中的交叉项

上述去除交叉项的变换中,矩阵P的列称为二次型 xTAx x T A x 主轴,向量y是向量x在由这些主轴构造的 Rn R n 空间的单位正交基下的坐标向量

主轴的几何意义:
不失一般性,考虑矩阵A为2阶对称方阵,c为常数,则所有对应下式的x的集合,对应一个椭圆或圆、双曲线、两条相交直线或单个点、或为空集:
xTAx=c x T A x = c
xTAx=yTDy x T A x = y T D y 的变换相当于是对曲线做了旋转,即旋转了原始的水平和竖直坐标轴

二次型的分类:
def:一个二次型Q是:
1.正定的:对所有非零x,有Q(x)>0
2.负定的:对所有非零x,有Q(x)<0
3.不定的:Q(x)正负值均存在

A为n阶矩阵,则二次型对应特征值有:
1.正定:当且仅当A的所有特征值均为正数
2.负定:当且仅当A的所有特征值均为负数
3.不定:当且仅当A既有正特征值,又有负特征值

相应的矩阵分为:正定矩阵、负定矩阵、不定矩阵

奇异值分解:
考虑到并不是所有矩阵都能对角化分解为: A=PDP1 A = P D P − 1 ,但是,所有矩阵都可以分解为如下形式,也就是奇异值分解:
A=QDP1 A = Q D P − 1
其中D是”对角矩阵“。它是线性代数中最有用的矩阵分解

一个mn矩阵的奇异值
设A是mn矩阵,则 ATA A T A 是对称矩阵且可以正交对角化,令{ v1,...vn v 1 , . . . v n }为 Rn R n 单位正交基且构成 ATA A T A 的特征向量,{ λ1...λn λ 1 . . . λ n }是 AAT A A T 对应的特征值,则有:

||Avi||2=(Avi)TAvi=vTiATAvi=vTi(λivi)=λi | | A v i | | 2 = ( A v i ) T A v i = v i T A T A v i = v i T ( λ i v i ) = λ i

可见 ATA A T A 的所有特征值均非负,不妨将其从大到小排序。则A的奇异值为 ATA A T A 的特征值的平方根,记为 σ1,...,σn σ 1 , . . . , σ n ,且按递减顺序排列,因此A的奇异值即为向量 Av1,Av2,...Avn A v 1 , A v 2 , . . . A v n 的长度

在数值计算中,A的秩往往对A中元素的微小变化很敏感,为此在计算矩阵的时,通常采用计算非零奇异值的个数的方法得到秩的值

SVD分解:
矩阵A的分解涉及一个m*n的“对角矩阵”Σ,形式如下:
Σ= Σ =

几何意义:
我们知道,一个向量被一个对角矩阵左乘,相当于在原空间中做了水平和竖直两方向的拉伸,被一个对称矩阵左乘,相当于在原空间中先做了绕原点的旋转,然后再做了沿两个坐标轴的拉伸。而被一个mn矩阵左乘,则会使空间维度发生改变,相当于对向量做了高维或低维的投影,然后在做旋转或拉伸变换

在SVD分解公式中,矩阵∑起到改变空间维度的作用, U U VT起到在新的空间中旋转并拉伸的作用

协方差矩阵:

主成分分析(PCA):

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值