用动态规划解决单词变形

问题

给定2个string,比如 horse 和 rosh, 第一个string最少需要经过多少变换步骤才能变成第二个string?
变换步骤有3种:

  1. Insert变换: 在任意位置插入一个字符
  2. Delete变换: 删除任意位置的一个字符
  3. Replace变换: 替换任意位置的一个字符

就以 horse 和 rosh 为例,转换过程如下:

  1. horse -> rorse: 将 h 替换成 r
  2. rorse -> rose: 删除第二个 r
  3. rore -> rosh: 将 e 替换成 h

思路

这个问题一看就是动态规划的路子。但是,如何思考呢?
首先,由简单到复杂地来看:
从一个空串,如何变换到一个字符的string呢? 增加一个字符即可。
从一个空串,如何变换到n个字符的string呢?一次一个地增加n个字符。
从一个拥有n个字符的字符串,如何变换到一个空串呢?一次一个地删除n个字符。

然后来看一个稍微复杂的例子:
假设 horse -> ros = x, 那么 horse->rosh = ?
假设走的路径是 horse->rosh = (horse->ros) + h , 则此条路径的变换次数就是 x+1
当然,这里因为要求最少变换步骤,所以也可能不是走的这个路径,比如,也可以走以下的路径:
horse->rosh = orse->ros

由以上这些思考,我们大致可以想到,这个动态规划的方法,应该是一个由少字符变换逐渐推导出多字符变换的过程。
假设s1要变换到s2,则第一列是s1,第一行是s2,一个字符一个字符地推导,看能否找到规律。于是,我们有了第一张表格:
Figure-1
horse有5个字符,rosh有4个字符,又因为考虑了空字符串,所以这是一个 6x5 的二维数组。
现在已经列出的第一行和第一列的数字,含义很简单:
第一行代表由空字符逐渐变成rosh这个字符串,需要的最少变动次数;
如:由空到r,需要1个变动;由空到ro,需要2个变动;等等。
第一列代表: h->\0 = 1, ho->\0 = 2, hor->\0 = 3, 等等。
因此,第一张表还是很容易看懂的。

以第一张表为基础,我们来推导一下第二行,如下图:
Figure-2

假设这个二维数组叫dp,那么 dp[1][1] 为何等于1呢?
因为 h->r 只需要一个replace变换,
为何 h->ro = 2 呢? 因为 h->ro = (h->r) + (Insert o) = 1+1 = 2
依次类推。到了最后, 已知 h->ros = 3, 那么 h->rosh = ? 是4吗?
不是4,还是3, 因为h已经在了,只需要增加ros这3个字符即可。这里也可以看成,行与列都减少一个最新的字符。

以上的分析用到了2种操作:

  1. Insert变换:
    dp[i][j] = dp[i][j-1] + 1
  2. Replace变换:
    dp[i][j] = dp[i-1][j-1]
    这里2个-1,就是上述的“行与列都减少一个最新的字符”的意思。
    注意,这里没有+1,是因为行与列都是h的缘故,即 s1[i] == s2[j],因此不需要替换 ;若+1,则代表在上一次的基础上,本次执行替换,如上一次是 ho->ro, 则本次是 hor -> ros, 即本次执行了r替换为s,这个时候需要+1.

还有第3种操作 - Delete 操作在这一行的举例中没有出现。想一想,什么情况下是Delete操作呢?
看上面的式子,自然地就能想到:
dp[i][j] = dp[i-1][j] + 1 这是代表了Delete操作吗?

没错。举个例子: hor->ro = (Delete r) + (ho->ro) = 1+(ho->ro)

总结以上的一切,

  1. 一般情况下, dp[i][j] = 1 + min(dp[i-1][j], dp[i][j-1], dp[i-1][j-1])
    即,在三种操作中找到操作数最少的一种,然后+1代表的是这种操作
  2. 特殊情况是,任何一种操作都不需要,因为此时2个字符串在各自当前位置的字符是一致的,如 s1[i-1] == s2[j-1] ,
    因此不需要 +1 操作,即: dp[i][j] == dp[i-1][j-1]

用这个规律,可以推导出如下的代码和表格:

if (word1[i-1] != word2[j-1]) {
    dp[i][j] = 1 + min(dp[i-1][j-1], min(dp[i-1][j], dp[i][j-1]));
}
else {
    dp[i][j] = dp[i-1][j-1];
}

最终表格:
Figure-3

代码

#include <iostream>
#include <string>
using namespace std;


int minDistance(string& word1, string& word2) 
{
    const int len1 = word1.size() + 1;
    const int len2 = word2.size() + 1;
    
    if (len1 == 1) return len2-1; 
    if (len2 == 1) return len1-1;
    
    int dp[len1][len2];

    for (int i=0; i<len2; ++i) {
        dp[0][i] = i;
    }
    
    for (int i=0; i<len1; ++i) {
        dp[i][0] = i;
    }
    
    for (int i=1; i<len1; ++i) {
        for (int j=1; j<len2; ++j) {
            if (word1[i-1] != word2[j-1]) {
                dp[i][j] = 1 + min(dp[i-1][j-1], min(dp[i-1][j], dp[i][j-1]));
            }
            else {
                dp[i][j] = dp[i-1][j-1];
            }
        }
    }
    for (int i=0; i<len1; i++) {
        for (int j=0; j<len2; j++) {
            cout << dp[i][j] << " ";
        }
        cout << endl;
    }
    
    return dp[len1-1][len2-1];
}


int main()
{
    string s1 = "", s2 = "";
    int minDist = -1;
    
    s1 = "horse";
    s2 = "rosh";
    minDist = minDistance(s1, s2);
    cout << s1 << endl << s2 << endl << minDist << endl;
    cout << "------------------------------\n";
    
    s1 = "a";
    s2 = "a";
    minDist = minDistance(s1, s2);
    cout << s1 << endl << s2 << endl << minDist << endl;
    cout << "------------------------------\n";
    
    s1 = "algorithm";
    s2 = "altruistic";
    minDist = minDistance(s1, s2);
    cout << s1 << endl << s2 << endl << minDist << endl;
    cout << "------------------------------\n";
    
    return 0;
}

(完)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值