问题
给定2个string,比如 horse 和 rosh, 第一个string最少需要经过多少变换步骤才能变成第二个string?
变换步骤有3种:
- Insert变换: 在任意位置插入一个字符
- Delete变换: 删除任意位置的一个字符
- Replace变换: 替换任意位置的一个字符
就以 horse 和 rosh 为例,转换过程如下:
- horse -> rorse: 将 h 替换成 r
- rorse -> rose: 删除第二个 r
- rore -> rosh: 将 e 替换成 h
思路
这个问题一看就是动态规划的路子。但是,如何思考呢?
首先,由简单到复杂地来看:
从一个空串,如何变换到一个字符的string呢? 增加一个字符即可。
从一个空串,如何变换到n个字符的string呢?一次一个地增加n个字符。
从一个拥有n个字符的字符串,如何变换到一个空串呢?一次一个地删除n个字符。
然后来看一个稍微复杂的例子:
假设 horse -> ros = x, 那么 horse->rosh = ?
假设走的路径是 horse->rosh = (horse->ros) + h , 则此条路径的变换次数就是 x+1
当然,这里因为要求最少变换步骤,所以也可能不是走的这个路径,比如,也可以走以下的路径:
horse->rosh = orse->ros
由以上这些思考,我们大致可以想到,这个动态规划的方法,应该是一个由少字符变换逐渐推导出多字符变换的过程。
假设s1要变换到s2,则第一列是s1,第一行是s2,一个字符一个字符地推导,看能否找到规律。于是,我们有了第一张表格:
horse有5个字符,rosh有4个字符,又因为考虑了空字符串,所以这是一个 6x5 的二维数组。
现在已经列出的第一行和第一列的数字,含义很简单:
第一行代表由空字符逐渐变成rosh这个字符串,需要的最少变动次数;
如:由空到r,需要1个变动;由空到ro,需要2个变动;等等。
第一列代表: h->\0 = 1, ho->\0 = 2, hor->\0 = 3, 等等。
因此,第一张表还是很容易看懂的。
以第一张表为基础,我们来推导一下第二行,如下图:
假设这个二维数组叫dp,那么 dp[1][1] 为何等于1呢?
因为 h->r 只需要一个replace变换,
为何 h->ro = 2 呢? 因为 h->ro = (h->r) + (Insert o) = 1+1 = 2
依次类推。到了最后, 已知 h->ros = 3, 那么 h->rosh = ? 是4吗?
不是4,还是3, 因为h已经在了,只需要增加ros这3个字符即可。这里也可以看成,行与列都减少一个最新的字符。
以上的分析用到了2种操作:
- Insert变换:
dp[i][j] = dp[i][j-1] + 1 - Replace变换:
dp[i][j] = dp[i-1][j-1]
这里2个-1,就是上述的“行与列都减少一个最新的字符”的意思。
注意,这里没有+1,是因为行与列都是h的缘故,即 s1[i] == s2[j],因此不需要替换 ;若+1,则代表在上一次的基础上,本次执行替换,如上一次是 ho->ro, 则本次是 hor -> ros, 即本次执行了r替换为s,这个时候需要+1.
还有第3种操作 - Delete 操作在这一行的举例中没有出现。想一想,什么情况下是Delete操作呢?
看上面的式子,自然地就能想到:
dp[i][j] = dp[i-1][j] + 1 这是代表了Delete操作吗?
没错。举个例子: hor->ro = (Delete r) + (ho->ro) = 1+(ho->ro)
总结以上的一切,
- 一般情况下, dp[i][j] = 1 + min(dp[i-1][j], dp[i][j-1], dp[i-1][j-1])
即,在三种操作中找到操作数最少的一种,然后+1代表的是这种操作 - 特殊情况是,任何一种操作都不需要,因为此时2个字符串在各自当前位置的字符是一致的,如 s1[i-1] == s2[j-1] ,
因此不需要 +1 操作,即: dp[i][j] == dp[i-1][j-1]
用这个规律,可以推导出如下的代码和表格:
if (word1[i-1] != word2[j-1]) {
dp[i][j] = 1 + min(dp[i-1][j-1], min(dp[i-1][j], dp[i][j-1]));
}
else {
dp[i][j] = dp[i-1][j-1];
}
最终表格:
代码
#include <iostream>
#include <string>
using namespace std;
int minDistance(string& word1, string& word2)
{
const int len1 = word1.size() + 1;
const int len2 = word2.size() + 1;
if (len1 == 1) return len2-1;
if (len2 == 1) return len1-1;
int dp[len1][len2];
for (int i=0; i<len2; ++i) {
dp[0][i] = i;
}
for (int i=0; i<len1; ++i) {
dp[i][0] = i;
}
for (int i=1; i<len1; ++i) {
for (int j=1; j<len2; ++j) {
if (word1[i-1] != word2[j-1]) {
dp[i][j] = 1 + min(dp[i-1][j-1], min(dp[i-1][j], dp[i][j-1]));
}
else {
dp[i][j] = dp[i-1][j-1];
}
}
}
for (int i=0; i<len1; i++) {
for (int j=0; j<len2; j++) {
cout << dp[i][j] << " ";
}
cout << endl;
}
return dp[len1-1][len2-1];
}
int main()
{
string s1 = "", s2 = "";
int minDist = -1;
s1 = "horse";
s2 = "rosh";
minDist = minDistance(s1, s2);
cout << s1 << endl << s2 << endl << minDist << endl;
cout << "------------------------------\n";
s1 = "a";
s2 = "a";
minDist = minDistance(s1, s2);
cout << s1 << endl << s2 << endl << minDist << endl;
cout << "------------------------------\n";
s1 = "algorithm";
s2 = "altruistic";
minDist = minDistance(s1, s2);
cout << s1 << endl << s2 << endl << minDist << endl;
cout << "------------------------------\n";
return 0;
}
(完)