Pytorch深度学习
文章平均质量分 59
赵小闲
瓜大菜鸟博
展开
-
【机器学习分类指标】准确率、精准率、召回率、F1、ROC曲线、AUC曲线
机器学习的指标介绍,防止忘记:一文看懂机器学习指标:准确率、精准率、召回率、F1、ROC曲线、AUC曲线分类性能度量指标:准确性(AC)、敏感性(SE)、特异性(SP)、F1评分、ROC曲线、PR(Precision-Recall)曲线、AUC曲线,混淆曲线原创 2023-09-06 10:51:39 · 213 阅读 · 0 评论 -
【pytorch】网络模型的保存与读取
Pytorch会把模型相关信息保存为一个字典结构的数据,以用于继续训练或者推理。原创 2023-08-04 21:30:45 · 508 阅读 · 0 评论 -
【Pytorch】Dataset类和DataLoader、tensorboard
Dataset本质上就是一个抽象类,可以把数据封装成Python可以识别的数据结构。Dataset类不能实例化,所以在使用Dataset的时候,我们需要定义自己的数据集类,也是Dataset的子类,来继承Dataset类的属性和方法。Dataset可作为DataLoader的参数传入DataLoader,实现基于张量的数据预处理Dataset和DataLoader都是用来帮助我们加载数据集的两个重要工具类:Dataset用来构造支持索引的数据集。原创 2023-08-02 22:03:49 · 764 阅读 · 0 评论 -
【深度学习】李沐动手学习深度学习-环境配置
复制jupyter下边的链接,将链接中的端口改为刚才配置的本地端口,在本地浏览器打开。服务器已安装anaconda3,因此不用安装miniconda.接下来,需要下载这本书的代码到远程服务器上。3.下载 D2L Notebook。2.安装pytorch和d2l包。1.首先创建d2l环境。回车,输入服务器密码。原创 2023-07-02 15:30:54 · 1305 阅读 · 0 评论 -
【深度学习】Python深度学习实践-不同网络结构实现minist数据集分类(线性\CNN\inception)
要暑期实践了,剩下的Residual和RNN有空再敲吧。,写的很详细,对代码部分也进行了详细分析。原创 2023-07-13 10:47:38 · 509 阅读 · 0 评论