1. 先把问题“嚼碎”(输入处理)
- 比如你问:“太阳为什么东升西落?”
- 切分知识点:模型会把这句话拆解成词汇单元(比如:“太阳”“为什么”“东”“升”“西”“落”),就像你背单词时先拆解句子。
2. 动用毕生所学(模型“回想”知识)
大模型并不是真有一个“数据库”,而是依靠训练时海量的知识联结:(类似人类的经验积累)
- 内在规律:从上学过的教材、论文、百科中记住过“地球自转导致太阳视运动”这个常识。
- 猜测套路:统计发现“太阳”和“地球自转”经常在相似的问题里同时出现。
3. 按经验“造句子”(生成回答)
模型像一个超会考试的学霸:
- 填空式输出:根据输入的提示,用概率预测下一个词。比如输入“太阳东升西落是因为____”,它从经验中最可能先填“地球”。
- 反复检查:每写一个词都要回头看看整句话是否通顺合理(类似你写作文不让句子前后矛盾)。
4. 最后交卷(输出答案)
生成类似:“太阳东升西落是由于地球自西向东自转形成的视觉现象。”
核心原理总结
- 不是真懂,只是猜得准:模型靠的是海量数据训练出的词语连接规律,和真正理解物理原理的人类不同。
- 有点像“复读机升级版”:把人类知识中的常见答案模式重新组合输出。
可以理解为:一个学霸整理过全世界所有教科书后,用最快的速度帮你“参考书本拼出答案的参考答案”。