矩阵论(零):线性代数基础知识整理(1)——逆矩阵、(广义)初等变换、满秩分解

矩阵论(零):线性代数基础知识整理为更具一般性,讨论复矩阵和复向量,向量如无特别说明均为列向量复数的运算法则、复矩阵的共轭与共轭转置行列式的性质逆矩阵 初等变换与矩阵、向量组的秩零矩阵的判定方法向量空间、正交矩阵与线性变换方阵的迹及其性质矩阵的特征值相似变换与相似对角化复数的运算法则、复矩阵的共轭与共轭转置复数的运算法则 复数的四则运算律与实数的完全...
摘要由CSDN通过智能技术生成

矩阵论专栏:专栏(文章按照顺序排序)

线性代数是矩阵论的先修课程,本篇博客整理线性代数的基础理论知识,为矩阵论的学习做准备。限于篇幅,梳理的重点将在定理和结论上(只给出部分必要的定义),对最基础的概念(如矩阵及其基本运算等等)不清楚的童鞋可以参考矩阵的基本运算
本文的讨论在一般的数域 F F F中进行, F F F可以是有理数域、实数域、复数域等。这里不给出数域的严格定义,只要知道数域是复数域的一个对加减乘除运算封闭的子集,且有理数域是最小的数域即可。需要特别指出的是,我们所关心的数域都是复数域的子集,并不是什么抽象的代数数域。由于数域都是复数域的子集,在复数中定义的基本运算以及相应的运算律往往也适用于实数、有理数,例如取共轭,实数和有理数的共轭是其自身。数域的相关理论可参考数域维基


本篇博客先介绍线性代数中一些基本的概念,然后重点围绕“秩”这一重要概念整理相关结论:


复数的运算法则、复矩阵的共轭与共轭转置

  • 复数的基本运算法则
    复数的基本运算法则与实数的完全一致,且根据复数的定义 z = a + b i z=a+bi z=a+bi容易验证,现列举如下:(设 a , b , c ∈ C a, b, c\in C a,b,cC
    • 加法交换律: a + b = b + a a+b=b+a a+b=b+a
    • 加法结合律: a + ( b + c ) = ( a + b ) + c a+(b+c)=(a+b)+c a+(b+c)=(a+b)+c
    • 乘法交换律: a × b = b × a a\times b=b\times a a×b=b×a
    • 乘法结合律: a × ( b × c ) = ( a × b ) × c a\times (b\times c)=(a\times b)\times c a×(b×c)=(a×b)×c
    • 乘法对加法的左分配律: ( a + b ) × c = a × c + b × c (a+b)\times c=a\times c+b\times c (a+b)×c=a×c+b×c
    • 乘法对加法的右分配律: a × ( b + c ) = a × b + a × c a\times (b+c)=a\times b+a\times c a×(b+c)=a×b+a×c
  • 复数的共轭、复数的模的运算律(设 x , y ∈ C x,y\in C x,yC
    • x ± y ‾ = x ‾ ± y ‾ \overline{x\pm{}y}=\overline{x}\pm{}\overline{y} x±y=x±y
    • x y ‾ = x ˉ y ˉ \overline{xy}=\bar{x}\bar{y} xy=xˉyˉ
    • ( x y ) ‾ = x ‾ y ‾ \overline{(\frac{x}{y})}=\frac{\overline{x}}{\overline{y}} (yx)=yx
    • x x ‾ = x ‾ x = ∣ x ∣ 2 x\overline{x}=\overline{x}x=|x|^2 xx=xx=x2
    • ∣ x y ∣ = ∣ x ∣ ∣ y ∣ |xy|=|x||y| xy=xy
  • 矩阵的共轭
    矩阵的共轭就是将原矩阵的每个元素取共轭,即若 A = ( a i j ) m × n A=(a_{ij})_{m\times{n}} A=(aij)m×n,则 A ‾ = ( a i j ‾ ) m × n \overline{A}=(\overline{a_{ij}})_{m\times{n}} A=(aij)m×n。实矩阵的共轭是其本身。根据复数共轭的运算率,可得矩阵的共轭具有如下性质:
    • A ‾ ‾ = A \overline{\overline{A}}=A A=A
    • A + B ‾ = A ‾ + B ‾ \overline{A+B}=\overline{A}+\overline{B} A+B=A+B
    • k A ‾ = k ˉ A ‾ , k ∈ C \overline{kA}=\bar{k}\overline{A},k\in{C} kA=kˉA,kC
    • A B ‾ = A ˉ B ˉ \overline{AB}=\bar{A}\bar{B} AB=AˉBˉ
  • 矩阵的共轭转置
    矩阵的共轭转置即先取共轭再转置或先转置再取共轭,即 A H = ( A T ) ‾ = ( A ‾ ) T A^H=\overline{(A^T)}=\Bigl(\overline{A}\Bigr)^T AH=(AT)=(A)T。实矩阵的转置是复矩阵的共轭转置的特例。矩阵的共轭转置具有如下性质:
    • ( A H ) H = A (A^{H})^H=A (AH)H=A
    • ( A H ) T = ( A T ) H (A^H)^T=(A^T)^H (AH)T=(AT)H
    • A H ‾ = ( A ‾ ) H \overline{A^H}=(\overline A)^H AH=(A)H
    • ( A + B ) H = A H + B H (A+B)^H=A^H+B^H (A+B)H=AH+BH
    • ( k A ) H = k ‾ A H , k ∈ C (kA)^H=\overline{k}A^H,k\in{C} (kA)H=kAH,kC
    • ( A B ) H = B H A H (AB)^H=B^HA^H (AB)H=BHAH
  • Hermite矩阵(共轭对称矩阵)
    若方阵A满足 A H = A A^H=A AH=A,则称A是Hermite矩阵。实对称矩阵是一种Hermite矩阵。

行列式的性质

设F为一数域,给定正整数 n n n,在 F F F上可以构造出唯一的映射 F n × n → F F^{n\times n}\rightarrow F Fn×nF满足行列式第一公理和行列式第二公理。行列式的具体表达式可以使用置换或逆序数写出,本文略去,具体可参考博客以及知乎
A , B ∈ F n × n A,B\in F^{n\times n} A,BFn×n k ∈ F k\in F kF为常数,根据置换或逆序数的性质可得行列式的如下性质:

  • d e t ( A T ) = d e t ( A ) det(A^T)=det(A) det(AT)=det(A)
  • d e t ( A H ) = d e t ( A ) ‾ det(A^H)=\overline{det(A)} det(AH)=det(A)
  • d e t ( k A ) = k n d e t ( A ) det(kA)=k^ndet(A) det(kA)=kndet(A)
  • 行列式的某一行(列)乘非零常数 k ∈ F k\in F kF,则行列式的值变为原来的 k k k
  • 互换行列式的两行(或两列),则行列式的值取负
  • 行列式的某一行(列)加上另一行(列)的常数倍,行列式的值不变
  • d e t ( A B ) = d e t ( A ) d e t ( B ) det(AB)=det(A)det(B) det(AB)=det(A)det(B)
    证:见分块矩阵的初等变换。
  • 若A是共轭对称矩阵,则 d e t ( A ) ∈ R det(A)\in R det(A)R
    证:因为 d e t ( A ) = d e t ( A H ) = d e t ( A ) ‾ det(A)=det(A^H)=\overline{det(A)} det(A)=det(AH)=det(A),所以 d e t ( A ) det(A) det(A)的虚部为零, d e t ( A ) ∈ R det(A)\in R det(A)R

A ∈ F m × m , B ∈ F n × n A\in F^{m\times m},B\in F^{n\times n} AFm×m,BFn×n,则:

  • 若A是对角矩阵或上(下)三角矩阵,则A的行列式是A的主对角元之积
  • 拉普拉斯展开式一: ∣ A ∗ O B ∣ = ∣ A O ∗ B ∣ = ∣ A ∣ ∣ B ∣ \begin{vmatrix} A&*\\O&B\end{vmatrix}=\begin{vmatrix}A&O\\*&B\end{vmatrix}=|A||B| AOB=AOB=AB
  • 拉普拉斯展开式二: ∣ O A B ∗ ∣ = ∣ ∗ A B O ∣ = ( − 1 ) m n ∣ A ∣ ∣ B ∣ \begin{vmatrix}O&A\\B&*\end{vmatrix}=\begin{vmatrix}*&A\\B&O\end{vmatrix}=(-1)^{mn}|A||B| OBA=BAO=(1)mnAB

方阵的迹及其性质

  • 定义
    方阵A的迹 t r ( A ) tr(A) tr(A)定义为 A = ( a i j ) n × n A=(a_{ij})_{n\times n} A=(aij)n×n的主对角元之和,即 t r ( A ) = ∑ i = 1 n a i i tr(A)=\sum_{i=1}^n a_{ii} tr(A)=i=1naii
  • 性质
    • 设A、B均为n阶方阵,则 t r ( A ± B ) = t r ( A ) ± t r ( B ) tr(A\pm{B)}=tr(A)\pm{}tr(B) tr(A±B)=tr(A)±tr(B)
    • t r ( c A ) = c t r ( A ) , c ∈ F tr(cA)=ctr(A),c\in{F} tr(cA)=ctr(A),cF
    • t r ( A T ) = t r ( A ) , t r ( A ˉ ) = t r ( A H ) = t r ( A ) ‾ tr(A^T)=tr(A),tr(\bar{A})=tr(A^H)=\overline{tr(A)} tr(AT)=tr(A),tr(Aˉ)=tr(AH)=tr(A)
      推论: t r ( A T B ) = t r ( B T A ) = ∑ i , j A i j B i j tr(A^TB)=tr(B^TA)=\sum_{i,j}A_{ij}B_{ij} tr(ATB)=tr(BTA)=i,jAijBij,其中A、B均为 m × n m\times{n} m×n矩阵
    • 设A为 m × n m\times{n} m×n矩阵,B为 n × m n\times{m} n×m矩阵,则 t r ( A B ) = t r ( B A ) = ∑ i , j A i j B j i tr(AB)=tr(BA)=\sum_{i,j}A_{ij}B_{ji} tr(AB)=tr(BA)=i,jAijBji
    • 设A、B、C均为 m × n m\times{n} m×n矩阵,则 t r ( ( A ⊙ B ) T C ) = t r ( A T ( B ⊙ C ) ) = ∑ i , j A i j B i j C i j tr((A\odot{B})^TC)=tr(A^T(B\odot{C}))=\sum_{i,j}A_{ij}B_{ij}C_{ij} tr((AB)TC)=tr(AT(BC))=i,jAijBijCij式中 ⊙ \odot{} 是逐元素乘法(Hadarmard积)
    • 设A、B、C均为 m × n m\times{n} m×n矩阵, B B B的所有元素均非零,则 t r ( ( A ⊘ B ) T C ) = t r ( A T ( C ⊘ B ) ) = ∑ i j A i j C i j B i j tr((A\oslash B)^TC)=tr(A^T(C\oslash B))=\sum_{ij}\frac{A_{ij}C_{ij}}{B_{ij}} tr((AB)TC)=tr(AT(CB))=ijBijAijCij式中 ⊘ \oslash 是逐元素除法

逆矩阵

  • 定义
    A ∈ F n × n A\in F^{n\times n} AFn×n,若存在 B ∈ F n × n B\in F^{n\times n} BFn×n使得 A B = B A = I AB=BA=I AB=BA=I其中 I I I是单位矩阵,则称A是可逆的,B是A的逆矩阵,记为 B = A − 1 B=A^{-1} B=A1
  • 定理:任意方阵的逆矩阵若存在则唯一
  • 伴随矩阵
    • n阶 ( n ⩾ 2 ) (n\geqslant{2}) (n2)方阵A的伴随矩阵 A ∗ A^* A定义为:以 A j i A_{ji} Aji为(i,j)元素的n阶方阵,其中 A i j A_{ij} Aij A A A的(i,j)元素 a i j a_{ij} aij的代数余子式
    • 对任意n阶 ( n ⩾ 2 ) (n\geqslant{2}) (n2)方阵A,根据拉普拉斯展开式,有 A A ∗ = A ∗ A = d e t ( A ) I AA^*=A^*A=det(A)I AA=AA=det(A)I成立
  • 伴随矩阵的性质(设 A , B ∈ F n × n , n ⩾ 2 A,B\in F^{n\times n},n\geqslant 2 A,BFn×n,n2
    • ( k A ) ∗ = k n − 1 A ∗ , k ∈ F (kA)^*=k^{n-1}A^*,k\in{F} (kA)=kn1A,kF
    • ∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^*|=|A|^{n-1} A=An1
    • ( A ∗ ) ∗ = ∣ A ∣ n − 2 A (A^*)^*=|A|^{n-2}A (A)=An2A
    • ( A ∗ ) T = ( A T ) ∗ (A^*)^T=(A^T)^* (A)T=(AT)
    • ( A ∗ ) H = ( A H ) ∗ (A^*)^H=(A^H)^* (A)H=(AH)
    • ( A B ) ∗ = B ∗ A ∗ (AB)^*=B^*A^* (AB)=BA
  • 方阵可逆的充要条件
    • (行列式判定)n阶方阵 A = ( a i j ) n × n A=(a_{ij})_{n\times{n}} A=(aij)n×n可逆的充要条件是 d e t ( A ) ≠ 0 det(A)\neq0 det(A)=0,A的逆矩阵为 A − 1 = { A ∗ d e t ( A ) n ⩾ 2 ( a 11 − 1 ) 1 × 1 n = 1 A^{-1}=\begin{cases}\frac{A^*}{det(A)}&n\geqslant{2}\\(a_{11}^{-1})_{1\times{1}}&n=1\end{cases} A1={ det(A)A(a111)1×1n2n=1
    • n阶方阵 A = ( a i j ) n × n A=(a_{ij})_{n\times{n}} A=(aij)n×n可逆的充要条件是存在 B B B使得 A B = I AB=I AB=I
      证:
      必要性:若 A A A可逆,显然取 B = A − 1 B=A^{-1} B=A1就有 A B = I AB=I AB=I
      充分性:若存在 B B B使得 A B = I AB=I AB=I,则由 d e t ( A B ) = d e t ( A ) d e t ( B ) = d e t ( I ) = 1 det(AB)=det(A)det(B)=det(I)=1 det(AB)=det(A)det(B)=det(I)=1 d e t ( A ) ≠ 0 det(A)\neq 0 det(A)=0(否则的话就有 d e t ( A B ) = 0 det(AB)=0 det(AB)=0 d e t ( A B ) = 1 det(AB)=1 det(AB)=1矛盾),故由行列式判定知 A A A可逆。(此时若用 A − 1 A^{-1}
  • 22
    点赞
  • 104
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值