矩阵论(零):线性代数基础知识整理(上)

本篇博客整理线性代数的基础理论知识上篇(备忘+梳理),限于篇幅,不会把所有定义都罗列出来,而是将整理的重点放在定理和结论上(当然有些必要的定义还是会说明的),对于最基础的概念(如什么是矩阵、行列式怎么定义的等等)不清楚的童鞋可以参考link
为更具一般性,讨论复矩阵和复向量(由于复数包含了实数,很多实数情形下的结论能够从复数情形下的相应结论推导而来),向量如无特别说明均为列向量

本篇博客主要有以下几部分内容:

  • 复数的运算法则、复矩阵的共轭与共轭转置
  • 行列式的性质
  • 方阵的迹及其性质
  • 逆矩阵
    • 伴随矩阵
    • 逆矩阵
  • 初等变换与矩阵、向量组的秩
    • 初等变换、初等矩阵
    • 矩阵的秩及性质
    • 向量组的秩及性质
    • 线性方程组的解
    • 关于秩的一些重要结论
  • 满秩分解
    • 满秩分解的定义
    • 满秩分解的存在性
    • 满秩分解的快速计算方法

由于本人经历有限,本博客的主要目的是进行知识的梳理(内容的顺序基本遵循它们之间的逻辑推导关系),故多数定理没有给出证明过程,具体证明请参考大学教材。


复数的运算法则、复矩阵的共轭与共轭转置

  • 复数的运算法则
    复数的四则运算律与实数的完全一致
    (加法的交换律、结合律、乘法的交换律、结合律、乘法对加法的左分配律、右分配律)
    复数的共轭、复数的模的运算律
    • x±y=xˉ±yˉ\overline{x\pm{}y}=\bar{x}\pm{}\bar{y}
    • xy=xˉyˉ\overline{xy}=\bar{x}\bar{y}
    • (xy)=xˉyˉ\overline{(\frac{x}{y})}=\frac{\bar{x}}{\bar{y}}
    • xx=xx=x2x\overline{x}=\overline{x}x=|x|^2
    • xy=xy|xy|=|x||y|
  • 矩阵的共轭
    矩阵的共轭就是将原矩阵的每个元素取复数共轭后得到的矩阵,即若A=(aij)m×nA=(a_{ij})_{m\times{n}},则A=(aij)m×n\overline{A}=(\overline{a_{ij}})_{m\times{n}}。矩阵的共轭具有如下性质:
    • A=A\overline{\overline{A}}=A
    • A+B=A+B\overline{A+B}=\overline{A}+\overline{B}
    • kA=kˉA,kC\overline{kA}=\bar{k}\overline{A},k\in{C}
    • AB=AˉBˉ\overline{AB}=\bar{A}\bar{B}
  • 矩阵的共轭转置
    矩阵的共轭转置即先取共轭再转置或先转置再取共轭,即AH=(AT)=(A)TA^H=\overline{(A^T)}=\Bigl(\overline{A}\Bigr)^T。矩阵的共轭转置具有如下性质:
    • 若A是实矩阵,则AH=ATA^H=A^T
    • (AH)H=A(A^{H})^H=A
    • (AH)T=(AT)H(A^H)^T=(A^T)^H
    • (A+B)H=AH+BH(A+B)^H=A^H+B^H
    • (kA)H=kˉAH,kC(kA)^H=\bar{k}A^H,k\in{C}
    • (AB)H=BHAH(AB)^H=B^HA^H
  • Hermite矩阵(共轭对称矩阵)
    若方阵A满足AH=AA^H=A,则称A是共轭对称矩阵。

行列式的性质

设A、B均为n阶方阵,k为常数:

  • det(AT)=det(A)det(A^T)=det(A)
  • det(AH)=det(A)det(A^H)=\overline{det(A)}
  • det(kA)=kndet(A)det(kA)=k^ndet(A)
  • det(AB)=det(A)det(B)det(AB)=det(A)det(B)
  • 若A是共轭对称矩阵,则det(A)det(A)是实数
    (因为det(A)=det(AH)=det(A)det(A)=det(A^H)=\overline{det(A)},所以det(A)det(A)的虚部为零,即det(A)det(A)是实数)

设A、B分别为m阶、n阶方阵:

  • ACOB=AB\begin{vmatrix} A&C\\O&B\end{vmatrix}=|A||B|
  • AOCB=AB\begin{vmatrix}A&O\\C&B\end{vmatrix}=|A||B|
  • 若A是对角矩阵或上(下)三角矩阵,则A的行列式是A的主对角元之积

方阵的迹及其性质

  • 定义
    方阵A的迹tr(A)tr(A)定义为A的主对角元之和
  • 性质
    • 设A、B均为n阶方阵,则tr(A±B)=tr(A)±tr(B)tr(A\pm{B)}=tr(A)\pm{}tr(B)
    • tr(cA)=ctr(A),cCtr(cA)=ctr(A),c\in{C}
    • tr(AT)=tr(A),tr(A)=tr(AH)=tr(A)tr(A^T)=tr(A),tr(\overline{A})=tr(A^H)=\overline{tr(A)}
      推论:tr(ATB)=tr(BTA)=i,jAijBijtr(A^TB)=tr(B^TA)=\sum_{i,j}A_{ij}B_{ij},其中A、B均为m×nm\times{n}矩阵
    • 设A为m×nm\times{n}矩阵,B为n×mn\times{m}矩阵,则tr(AB)=tr(BA)=i,jAijBjitr(AB)=tr(BA)=\sum_{i,j}A_{ij}B_{ji}
    • 设A、B、C均为m×nm\times{n}矩阵,则tr((AB)TC)=tr(AT(BC))=i,jAijBijCijtr((A\odot{B})^TC)=tr(A^T(B\odot{C}))=\sum_{i,j}A_{ij}B_{ij}C_{ij}式中\odot{}是逐元素乘积(Hardamard积)
    • 设A、B、C均为m×nm\times{n}矩阵,则tr((AB)TC)=tr(AT(CB))=ijAijCijBijtr((A\oslash B)^TC)=tr(A^T(C\oslash B))=\sum_{ij}\frac{A_{ij}C_{ij}}{B_{ij}}式中\oslash是逐元素除法

逆矩阵

  • 定义
    设A为n阶方阵,若存在n阶方阵B使得AB=BA=IAB=BA=I则称A是可逆的,B是A的逆矩阵,记为B=A1B=A^{-1}
  • 定理:任意方阵的逆矩阵若存在则唯一
  • 伴随矩阵
    • n阶(n2)(n\geqslant{2})方阵A的伴随矩阵AA^*定义为:以AjiA_{ji}为(i,j)元素的n阶方阵,其中AijA_{ij}det(A)det(A)的元素aija_{ij}的代数余子式
    • 对任意n阶(n2)(n\geqslant{2})方阵A,有AA=AA=det(A)IAA^*=A^*A=det(A)I成立
  • 伴随矩阵的性质(设方阵A、B均为n阶(n2)(n\geqslant{2})方阵
    • (kA)=kn1A,kC(kA)^*=k^{n-1}A^*,k\in{C}
    • A=An1|A^*|=|A|^{n-1}
    • (A)=An2A(A^*)^*=|A|^{n-2}A
    • (A)T=(AT)(A^*)^T=(A^T)^*
    • (A)H=(AH)(A^*)^H=(A^H)^*
    • (AB)=BA(AB)^*=B^*A^*
  • 方阵可逆的充要条件
    • n阶方阵A=(aij)n×nA=(a_{ij})_{n\times{n}}可逆的充要条件是det(A)0det(A)\neq0,且A的逆矩阵为A1={Adet(A)n2(a111)1×1n=1A^{-1}=\begin{cases}\frac{A^*}{det(A)}&n\geqslant{2}\\(a_{11}^{-1})_{1\times{1}}&n=1\end{cases}
  • 逆矩阵的性质
    设A、B是同阶方阵,常数k0k\neq0
    • (A1)1=A(A^{-1})^{-1}=A
    • (AT)1=(A1)T(A^T)^{-1}=(A^{-1})^T
    • (AH)1=(A1)H(A^H)^{-1}=(A^{-1})^H
    • (kA)1=1kA1(kA)^{-1}=\frac{1}{k}A^{-1}
    • (An)1=(A1)n(A^n)^{-1}=(A^{-1})^n
    • (A)1=(A1)=AA(A^*)^{-1}=(A^{-1})^*=\frac{A}{|A|}(A的阶数大于等于2)
    • (AB)1=B1A1(AB)^{-1}=B^{-1}A^{-1}
  • 特殊矩阵的逆矩阵
    • 若对角矩阵Σ=[λ1λn]\Sigma=\begin{bmatrix}\lambda_1&\quad\\\quad&\ddots&\quad\\\quad&\quad&\lambda_n\end{bmatrix}可逆,则其逆矩阵为Σ1=[λ11λn1]\Sigma^{-1}=\begin{bmatrix}\lambda_1^{-1}&\quad\\\quad&\ddots&\quad\\\quad&\quad&\lambda_n^{-1}\end{bmatrix}
    • 若上三角方阵可逆,则其逆矩阵为上三角方阵
    • 若下三角方阵可逆,则其逆矩阵为下三角方阵

初等变换与矩阵、向量组的秩

行最简形和列最简形

  • 矩阵A称为行最简形,若A的所有非零行都在零行的上面,A的每个非零行的首非零元是1,其列号随行号严格单调递增,且其所在列的其他元素均为零。
  • 矩阵A称为列最简形,若A的所有非零列都在零列的左面,A的每个非零列的首非零元是1,其行号随列号严格单调递增,且其所在行的其他元素均为零。

初等变换

初等行(列)变换有三种:

  • 交换矩阵的第i行(列)和第j行(列)
  • 用非零常数乘矩阵的第i行(列)
  • 将矩阵的第i行(列)的k倍(kC)(k\in{C})加到第j行(列)

初等矩阵

  • 定义:对单位矩阵只作1次初等变换得到的矩阵称为初等矩阵
    【注】初等矩阵都是可逆的
  • 定理:设A为m×nm\times{n}矩阵,对A施行1次初等行变换,其结果等同于给A的左边乘上一个相应的m阶初等矩阵(对单位矩阵施行1次相同的初等行变换);对A施行1次初等列变换,其结果等同于给A的右边乘上一个相应的n阶初等矩阵(对单位矩阵施行1次相同的初等列变换)
  • 定理:方阵A是可逆矩阵的充要条件是A可以写成若干初等矩阵的积
  • 定理:任意矩阵A可通过有限次初等行变换化为唯一的一个行最简形,称为A的行最简形;也可通过有限次初等列变换化为唯一的一个列最简形,称为A的列最简形;即存在可逆矩阵P、Q使得PA是A的行最简形,AQ是A的列最简形

矩阵的秩

  • 定义:矩阵A的最高阶非零子式的阶数称为A的秩,记为r(A)或rank(A);当A没有非零子式(即A=OA=O)时,定义r(A)=0r(A)=0
  • r(AH)=r(AT)=r(A)r(A^H)=r(A^T)=r(A)
  • 定义:若m×nm\times{n}矩阵A的秩等于n,则称A是列满秩矩阵;若秩为m,则称A是行满秩矩阵;若r(A)=m=nr(A)=m=n,则称A是满秩方阵,显然满秩方阵就是可逆矩阵
  • 定理:初等行(列)变换不改变矩阵的秩
  • 定理:r(PA)=r(AQ)=r(A)r(PA)=r(AQ)=r(A),其中P、Q是可逆矩阵
  • 定义:设m×nm\times{n}矩阵A的秩为r,A的秩标准形(又称等价标准形)定义为m×nm\times{n}矩阵[IrOOO]\begin{bmatrix}I_r&O\\O&O\end{bmatrix}
  • 定理:任意秩为r的矩阵A可经有限次初等变换化为A的秩标准形;即存在可逆矩阵P、Q使得PAQ=[IrOOO]PAQ=\begin{bmatrix}I_r&O\\O&O\end{bmatrix}
  • 定理:列满秩矩阵可经有限次初等行变换化为它的秩标准形
  • 定理:行满秩矩阵可经有限次初等列变换化为它的秩标准形
  • 可逆方阵A求逆的方法:因为A1[IA]=[A1I]A^{-1}\begin{bmatrix}I&A\end{bmatrix}=\begin{bmatrix}A^{-1}&I\end{bmatrix},故只需对[IA]\begin{bmatrix}I&A\end{bmatrix}进行初等行变换把A化成单位矩阵,此时I就自然化成了A的逆矩阵。
  • 定理:r(BA)=r(AC)=r(A)r(BA)=r(AC)=r(A),其中B是列满秩矩阵,C是行满秩矩阵

向量组的秩

【注1】这里的向量指的是n维列向量,以下的结论在实数情形(向量的每个分量都是实数,且下面提到的常数均为实常数)和复数情形(向量的每个分量都是复数,且下面提到的常数均为复常数)下都成立
【注2】需要注意的是,下面列出的向量组的相关结论都是基于齐次线性方程组的解的结论,而齐次线性方程组的解的结论是通过对增广矩阵进行初等行变换化为行最简形(或行阶梯型)得到的。

线性相关与线性无关

  • 定义:设α1,α2, ,αm\alpha_1,\alpha_2,\cdots,\alpha_m是n维向量组,若存在不全为零的常数k1,k2, ,kmk_1,k_2,\cdots,k_m使得i=0mkiαi=0\sum_{i=0}^m k_i\alpha_i=0,则称该向量组线性相关;否则,称该向量组线性无关
  • 定义:若存在一组常数k1,k2, ,ksk_1,k_2,\cdots,k_s使得向量b=i=1skiaib=\sum_{i=1}^sk_ia_i,则称b可由a1,a2, ,asa_1,a_2,\cdots,a_s线性表示;若向量组A中的每个向量都可由向量组B线性表示,则称A可由B线性表示;若向量组A和B可相互线性表示,则称A和B等价
  • 定理:向量组a1,a2, ,asa_1,a_2,\cdots,a_s线性相关等价于齐次线性方程组[a1as]x=0\begin{bmatrix}a_1&\cdots&a_s\end{bmatrix}x=0有非零解,等价于矩阵[a1as]\begin{bmatrix}a_1&\cdots&a_s\end{bmatrix}的秩小于s
  • 定理:若n维向量组U含有s>ns\gt{n}个向量,则U线性相关
  • 定理:向量组线性相关的充要条件为该向量组中至少存在一个向量可用其他向量线性表示
  • 定理:若向量组a1,a2, ,asa_1,a_2,\cdots,a_s线性无关,而a1,a2, ,as,ba_1,a_2,\cdots,a_s,b线性相关,则b可由a1,a2, ,asa_1,a_2,\cdots,a_s唯一地线性表示
  • 定理:若线性无关向量组A可由向量组B线性表示,则B所包含的向量个数不小于A所包含的向量个数
  • 定理:等价的线性无关向量组所含向量个数相同
  • 定理:若向量组的某个子组线性相关,则该向量组线性相关
  • 定理:若向量组线性无关,则该向量组的任意子组线性无关

极大无关组与秩

  • 定义:若向量组U有一个子组u满足:u线性无关,且U中任意向量均可由u线性表示,则称u是U的极大无关组
  • 定理:若n维向量组U含有非零向量,则U的极大无关组必存在
    证明:
    若U含有不多于nn个向量,取出U的所有线性无关子组,其中包含向量个数最多的子组一定是U的一个极大无关组。
    若U含有不少于n+1n+1个向量(包括了U是无穷集的情况),任取U的一个子组UU^{'},满足UU^{'}含有n+1n+1个向量,则UU^{'}是线性相关的。显然UU^{'}存在线性无关的子组,且UU^{'}的任意一个线性无关子组所含向量个数不大于n。设UU^{'}的线性无关子组所含向量个数最大值为f(U)f(U^{'})W=argmaxU{f(U)UU,card(U)=n+1}W=\underset{U^{'}}{\mathrm{argmax}}\{f(U^{'})|U^{'}\subseteq{U},card(U^{'})=n+1\}则U的线性无关子组所含向量个数最大值是f(W)f(W)。设WW^{'}是W的一个包含f(W)f(W)个向量的线性无关子组,现证明U中任意向量均可由WW^{'}线性表示:显然WW^{'}中向量可由WW^{'}线性表示,xU,xW,W{x}\forall{x}\in{U},x\notin{W^{'}},W^{'}\cup{\{x\}}是线性相关的,故x可由WW^{'}线性表示,故根据极大无关组的定义,WW^{'}是U的一个极大无关组。
  • 定理:若U存在极大无关组,则U的所有极大无关组所含向量的个数均相同
  • 定理:U中任意向量都可由U的某个极大无关组唯一地线性表示
  • 定义:向量组U的秩定义为U的极大无关组所含的向量个数,记为r(U);当U只含零向量时,定义r(U)=0r(U)=0
  • 定义:矩阵的行向量组的秩称为该矩阵的行秩,矩阵的列向量组的秩称为该矩阵的列秩
  • 定理:若r(U)=rr(U)=r,则U中的任意r个线性无关的向量构成了U的一个极大无关组
  • 定理:若向量组UU可由向量组UU^{'}线性表示,则r(U)r(U)r(U)\leqslant{}r(U^{'})
  • 定理:若两向量组等价,则它们的秩相等

线性方程组的解

【注】若讨论范围是实数范围,则系数矩阵、增广矩阵、方程的解都在实数范围内;若讨论范围是复数范围,则系数矩阵、增广矩阵、方程的解都在复数范围内

  • 对任意线性方程组Ax=bAx=b,其中A是m×nm\times{n}矩阵,称B=[Ab]B=\begin{bmatrix}A&b\end{bmatrix}是A的增广矩阵,通过对B进行初等行变换化为B的行最简形(或行阶梯型),可以证明方程组的解有且仅有以下三种情形:
    • r(A)+1=r(B)r(A)+1=r(B),则方程组无解
    • r(A)=r(B)=nr(A)=r(B)=n,则方程组有唯一解
    • r(A)=r(B)<nr(A)=r(B)<n,则方程组有无穷多解
  • 定义:齐次线性方程组Ax=0Ax=0的所有解向量x构成了一个向量组,若该向量组有极大无关组,则称该向量组的极大无关组是该方程组的一个基础解系。
  • 定理:设A是m×nm\times{n}矩阵,r(A)=r<nr(A)=r<n,则Ax=0Ax=0的基础解系存在,且其所含解向量个数为nrn-r(通过对增广矩阵进行初等行变换化为行阶梯型或行最简形,就可以构造出一个基础解系)

关于秩的一些重要结论

  • 矩阵的秩等于其行秩和列秩
  • r(A+B)r(A)+r(B)r(A+B)\leqslant{}r(A)+r(B)
  • r(A)+r(B)nr(Am×nBn×k)min{r(A),r(B)}r(A)+r(B)-n\leqslant{}r(A_{m\times{n}}B_{n\times{k}})\leqslant{}min\{r(A),r(B)\}
  • 设B是m×nm\times{n}矩阵,若r(AB)=r(B)r(AB)=r(B),则关于x的齐次线性方程组ABx=0ABx=0Bx=0Bx=0是同解方程组
    证明:
    显然Bx=0Bx=0的解都是ABx=0ABx=0的解。取方程Bx=0Bx=0的一个基础解系C,则C包含nr(B)n-r(B)个向量,即nr(AB)n-r(AB)个向量,且C是ABx=0ABx=0的解空间中的一个线性无关组。由于ABx=0ABx=0的任一基础解系包含nr(AB)n-r(AB)个向量,由定理“设U是一个向量组,若r(U)=rr(U)=r,则U中的任意r个线性无关的向量构成了U的一个极大无关组”知,C是ABx=0ABx=0的一个基础解系,得证。
  • 对于m×nm\times{n}复矩阵A,r(AHA)=r(AAH)=r(A)r(A^HA)=r(AA^H)=r(A);对于m×nm\times{n}实矩阵A,r(ATA)=r(AAT)=r(A)r(A^TA)=r(AA^T)=r(A)
    证明:
    只证r(AHA)=r(A)r(A^HA)=r(A)r(AAH)=r(A)r(AA^H)=r(A)的证法同理(只要证r(AAH)=r(AH)r(AA^H)=r(A^H)就好了)。考虑两个齐次线性方程组AHAx=0A^HAx=0Ax=0Ax=0,显然Ax=0AHAx=0Ax=0\Rightarrow A^HAx=0,现证明AHAx=0Ax=0A^HAx=0\Rightarrow Ax=0:用xHx^H左乘AHAx=0A^HAx=0的两端得到xHAHAx=(Ax)H(Ax)=0x^HA^HAx=(Ax)^H(Ax)=0,故Ax=0Ax=0。这说明AHAx=0A^HAx=0Ax=0Ax=0是同解方程组,故它们的基础解系所含解向量个数相等,即nr(AHA)=nr(A)n-r(A^HA)=n-r(A),故r(AHA)=r(A)r(A^HA)=r(A)

满秩分解

  • 定义:设矩阵ACrm×nA\in{C^{m\times{n}}_r}(即A是秩为r的m×nm\times{n}复矩阵),若存在列满秩矩阵KCrm×rK\in{C^{m\times{r}}_r}和行满秩矩阵LCrr×nL\in{C^{r\times{n}}_r}使得A=KLA=KL,则称A=KLA=KL是A的一个满秩分解
  • 定理:设矩阵ACrm×nA\in{C^{m\times{n}}_r},若r>0r\gt{0},则A的满秩分解必存在
    证明:
    存在m阶可逆矩阵P和n阶可逆矩阵Q使得PAQ=[IrOOO]PAQ=\begin{bmatrix}I_r&O\\O&O\end{bmatrix},则A=P1[IrOOO]Q1=P1[IrO][IrO]Q1A=P^{-1}\begin{bmatrix}I_r&O\\O&O\end{bmatrix}Q^{-1}=P^{-1}\begin{bmatrix}I_r\\O\end{bmatrix}\begin{bmatrix}I_r&O\end{bmatrix}Q^{-1}。设K=P1[IrO]K=P^{-1}\begin{bmatrix}I_r\\O\end{bmatrix}L=[IrO]Q1L=\begin{bmatrix}I_r&O\end{bmatrix}Q^{-1},则K是列满秩矩阵,L是行满秩矩阵,且A=KLA=KL,故A=KLA=KL是A的一个满秩分解。得证。
  • 满秩分解的快速算法
    • 置换矩阵:n阶置换矩阵P是将n阶单位矩阵的列向量(或行向量)进行重新排列后得到的矩阵。P可以记为P=[ej1ej2ejn]P=\begin{bmatrix}e_{j_1}&e_{j_2}&\cdots&e_{j_n}\end{bmatrix},其中eie_i是n阶单位矩阵的第i列(行),j1,j2, ,jnj_1,j_2,\cdots,j_n1,2, ,n1,2,\cdots,n的一个全排列。
    • 置换矩阵P的性质:设A=[a1a2an]A=\begin{bmatrix}a_1&a_2&\cdots&a_n\end{bmatrix}P=[ej1ej2ejn]P=\begin{bmatrix}e_{j_1}&e_{j_2}&\cdots&e_{j_n}\end{bmatrix},则易验证AP=[aj1aj2ajn]AP=\begin{bmatrix}a_{j_1}&a_{j_2}&\cdots&a_{j_n}\end{bmatrix},即A的列向量组被按照P中列向量顺序进行了重排列。同样地,置换矩阵也能将A的行向量组进行重排列,只需用一个置换矩阵P左乘A即可。
    • 满秩分解算法:
      ACrm×n,r>0A\in{C^{m\times{n}}_r},r\gt{0}的行最简形的前r行构成的矩阵为L,L的第i行的首非零元在L的第jij_i列,设K=[aj1aj2ajr]K=\begin{bmatrix}a_{j_1}&&a_{j_2}&\cdots&a_{j_r}\end{bmatrix},则A=KLA=KL是A的一个满秩分解。
      证明:
      存在可逆矩阵P、Q使得PAPA是A的行最简形,且PAQ=[IrOOO]PAQ=\begin{bmatrix}I_r&O\\O&O\end{bmatrix}。由于PA=[IrOOO]Q1=[[IrO]Q1O]PA=\begin{bmatrix}I_r&O\\O&O\end{bmatrix}Q^{-1}=\begin{bmatrix}\begin{bmatrix}I_r&O\end{bmatrix}Q^{-1}\\O\end{bmatrix},所以L=[IrO]Q1L=\begin{bmatrix}I_r&O\end{bmatrix}Q^{-1},显然L是行满秩的。设Z=[ej1ej2ejr]Z=\begin{bmatrix}e_{j_1}&e_{j_2}\cdots&e_{j_r}\end{bmatrix},由行最简形的定义易知PAZ=[IrO]PAZ=\begin{bmatrix}I_r\\O\end{bmatrix},故AZ=P1[IrO]AZ=P^{-1}\begin{bmatrix}I_r\\O\end{bmatrix}。由矩阵K的定义知K=AZK=AZ,故实际上K=P1[IrO]K=P^{-1}\begin{bmatrix}I_r\\O\end{bmatrix},K是列满秩的,则KL=P1[IrO][IrO]Q1=P1[IrOOO]Q1=AKL=P^{-1}\begin{bmatrix}I_r\\O\end{bmatrix}\begin{bmatrix}I_r&O\end{bmatrix}Q^{-1}=P^{-1}\begin{bmatrix}I_r&O\\O&O\end{bmatrix}Q^{-1}=A,故A=KLA=KL是A的一个满秩分解。
      【注】上述算法无需求出可逆矩阵P和Q,只需对A进行初等行变换化为行最简形,就能迅速得出结果。

【注】在实数情形下,任意一个秩不为零的实矩阵也可满秩分解为一个列满秩实矩阵和一个行满秩实矩阵的积,道理与复数情形相同

展开阅读全文

没有更多推荐了,返回首页