# 贪心

FJ is about to take his N (1 ≤ N ≤ 2,000) cows to the annual"Farmer of the Year" competition. In this contest every farmer arranges his cows in a line and herds them past the judges.
The contest organizers adopted a new registration scheme this year: simply register the initial letter of every cow in the order they will appear (i.e., If FJ takes Bessie, Sylvia, and Dora in that order he just registers BSD). After the registration phase ends, every group is judged in increasing lexicographic order according to the string of the initials of the cows’ names.
FJ is very busy this year and has to hurry back to his farm, so he wants to be judged as early as possible. He decides to rearrange his cows, who have already lined up, before registering them.
FJ marks a location for a new line of the competing cows. He then proceeds to marshal the cows from the old line to the new one by repeatedly sending either the first or last cow in the (remainder of the) original line to the end of the new line. When he’s finished, FJ takes his cows for registration in this new order.
Given the initial order of his cows, determine the least lexicographic string of initials he can make this way.

  Input

* Line 1: A single integer: N* Lines 2..N+1: Line i+1 contains a single initial ('A'..'Z') of the cow in the ith position in the original line
Output

The least lexicographic string he can make. Every line (except perhaps the last one) contains the initials of 80 cows ('A'..'Z') in the new line.
Sample Input6


A
C
D
B
C
BSample OutputABCBCD

⑴ 有一个以最优方式来解决的问题。为了构造问题的解决方案，有一个候选的对象的集合。
⑵ 随着算法的进行，将积累起其它两个集合:一个包含已经被考虑过并被选出的候选对象，另一个包含已经被考虑过但被丢弃的候选对象。
⑶ 有一个函数来检查一个候选对象的集合是否提供了问题的解答。该函数不考虑此时的解决方法是否最优。
⑷ 还有一个函数检查是否一个候选对象的集合是可行的，也即是否可能往该集合上添加更多的候选对象以获得一个解。和上一个函数一样，此时不考虑解决方法的最优性。
⑸ 选择函数可以指出哪一个剩余的候选对象最有希望构成问题的解。
⑹ 最后，目标函数给出解的值。

（啊哈算法中的强盗分类）

#include<stdio.h>
#include<string.h>
int main()
{
int n,i;
char f[3000];
scanf("%d",&n);
for(i=0;i<n;i++)
{
getchar();
scanf("%c",&f[i]);
}
int a=0,b=n-1,sum=0,j=0,flag;
while(a<=b)
{
flag=0;
sum=sum+1;
for(i=0;a+i<=b;i++)
{
if(f[a+i]<f[b-i])
{
flag=0;
break;
}
else if(f[a+i]>f[b-i])
{
flag=1;
break;
}
}
if(flag==1)
printf("%c",f[b--]);
else
printf("%c",f[a++]);
if(sum==80)
{
sum=0;
printf("\n");
}
}
printf("\n");
return 0;
}


©️2019 CSDN 皮肤主题: 深蓝海洋 设计师: CSDN官方博客