共轭梯度法求解线性方程组python代码

共轭梯度法是把求解线性方程组的问题转化为求解一个与之等价的二次函数极小值的问题。从任意给定的初始点出发,沿一组关于矩阵A的共轭方向进行线性搜索,在无舍入误差的假定下,最多迭代n次(其中n为矩阵A的阶数),就可求得二次函数的极小点,也就求得线性方程组Ax= b的解。其python代码:

import math
import numpy as np  
from numpy import * 
import matplotlib.pyplot as plt

def cg(A,b,x): #共轭梯度法
    r = b-np.dot(A,x)      #r=b-Ax         r也是是梯度方向
    p= np.copy(r)
    i=0
    while(max(abs(r))>1.e-10 and i < 100  ): 
        print('i',i)
        print('r',r)
        pap=np.dot(np.dot(A,p),p)
        if pap==0:                  #分母太小时跳出循环
            return x
        print('pap=',pap)
        alpha = np.dot(r,r)/pap   #直接套用公式
        x1 = x + alpha*p
        r1 = r-alpha*np.dot(A,p)
        beta = np.dot(r1,r1)/np.dot(r,r)
        p1 = r1 +beta*p
        r = r1
        x = x1
        p = p1
        i=i+1
    return x

   
n=10  #n 个解
A = np.array([                                         #系数矩阵,注意必须是正定对称矩阵
[1., 1., 0.,  0.,  0.,  0,  0.,  0.,  0.,  0], 
[1., 1., 1. , 0.,  0,   0., 0.,  0.,  0.,  0], 
[ 0., 1.,  1. , 1., 0.,  0., 0.,  0.,  0.,  0], 
[ 0.,  0., 1., 1., 1., 0., 0.,  0. , 0.,  0], 
[ 0.,  0.,  0., 1.,  1., 1.,0.,   0.,  0.,  0], 
[ 0.,  0.,  0.,  0.,  1., 1.,1., 0.,  0.,  0], 
[ 0.,  0. , 0. , 0. , 0., 1., 1., 1., 0., 0], 
[ 0.,  0.,  0. , 0. , 0., 0.,  1., 1.,  1.,0], 
[ 0.,  0. , 0.,  0,  0.,  0.,  0.,  1.,1., 1.], 
[ 0.,  0. , 0. , 0, 0.,   0.,  0.,  0.,  1.,1], 
])
b = np.array([2., 3., 3.,3., 3.,3., 3., 3., 3., 2.])       
x = np.zeros(n, dtype = float)
f=cg(A,b,x)                         #调用共轭斜量法
print('x=',f)      
'''
n = 6   #其他几个矩阵,测试用
A = np.array([
[-3., 1., 0. , 0. ,  0., 0.5 ], 
[1., -3., 1. , 0. , 0,   0. ], 
[ 0., 1.,-3., 1., 0. ,   0. ], 
[ 0.,  0. , 1., -3., 1.,   0.], 
[ 0.,  0. , 0. , 1.,-3.,  1.], 
[ 0.5,  0. , 0. , 0. , 1.,  -3.], 
]) 
b = np.array([2.5, 1.5, 1., 1., 1.5, 2.5])

n = 3
A = np.array([
[2.,0.,1.],
[0.,1.,0.],
[1.,0.,2.]
]) 
b = np.array([3.,1.,3.])
'''
                    

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值