Hoj 2577 Simple Computing II

本文介绍了Hoj 2577 Simple Computing II的问题,该问题与Hoj 2576类似,都涉及容斥原理。题目要求找出1到m中能被给定的一组数中的唯一数整除的数的数量。解题的关键在于理解奇加偶减的概念,并根据乘数个数调整系数。文章提供了hoj 2577的解题代码。
摘要由CSDN通过智能技术生成

题目链接:http://acm.hit.edu.cn/hoj/problem/view?id=2577

以前做过一题:Hoj 2576 Simple Computing :http://blog.csdn.net/niuox/article/details/8592133

基本思想都是用容斥原理。

hoj 2576 给出一组数x1...xn,问从1到m中能有多少个数能够被这组数中的至少一个数整除。

hoj 2577 给出一组数x1...xn,问从1到m中能有多少个数能够被这组数中的唯一的数整除。

其实原理都是一样的,hoj 2576所求的情况类似于下图:


所有被蓝线覆盖的区域大小为:x1 + x2 + x3 - x1*x2 - x1*x3 - x2*x3 + x1*x2*x3;

即奇加偶减。

hoj 2577对应的情况类似于下图:


蓝线覆盖的区域为:x1 + x2 + x3 - 2*(x1*x2 - x1*x3 - x2*x3) + 3(x1*x2*x3);

即:仍然是奇加偶减,但是要乘以相应的等于乘数个数的系数。

hoj 2577的代码:

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <vector>
using namespace std;

long long x[12];

long long gcd(long long a,long long b)
{
    if(b == 0)
    {
        return a;
    }
    else
    {
        return gcd(b,a%b);
    }
}

int main()
{
#ifndef ONLINE_JUDGE
    freopen("in.txt","r",stdin);
#endif
    int t;
    scanf(" %d",&t);
    while(t--)
    {
        long long n,m;
        long long sum = 0;
        scanf(" %lld %lld",&n,&m);

        for(long long i=0;i<n;i++)
        {
            scanf(" %lld",&x[i]);
        }
        for(long long i = 1;i<(1<<n);i++)
        {
            long long s = 1;
            long long bits = 0;
            for(long long j=0;j<n;j++)
            {
                if(i &(1<<j))
                {
                    bits++;
                    s *= x[j]/gcd(s,x[j]);
                }
            }
            long long temp = m/s;
            //bits是奇数时
            if(bits&1)
            {
                sum +=temp*bits;
            }
            else
            {
                sum -=temp*bits;
            }
        }
        printf("%lld\n",sum);

    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值