http://astar.baidu.com/index.php?r=home/detail&id=3
题目重写如下:
Du熊填数字
Time Limit: 3000/2000 MS (C/Others) Memory Limit: 65536/32768 K (C/Others)
本次组委会推荐使用C、C++
Problem Description
du熊这几天使劲的往一个n 行n列的矩阵填0和1这两个数字,n为偶数,而且矩阵由里向外分成了n / 2层。比如n = 6时,矩阵的分层如下:
du熊填数时有一个要求:不能存在两个相邻的1,且位于不同的层(这里的相邻指两格子共用一条线)。
请你帮du熊计算一下有多少种填法。
Input
输入包含多组测试数据,每组数据包含一个偶数n (2 <= n <= 500)。
Output
请计算并输出对2012取余后的结果。
Sample Input
2
4
Sample Output
16
1952
Hint
当n = 4时
1011
0100
0100
0000
是满足要求的
1111
0100
0100
0000
是不满足要求的,因为第一行第二列的1和第二行第二列的1相邻且位于不同的层。
仔细分析题目之后我们可以发现数字1限制的方向是由中心向外发散的,同一层的格子填充互不受影响。由此可以从中心沿四个方向引直线将图形分成四个大块,各块之间的填充相互独立,且情形完全相同。
进一步,依据各个格子之间是否存在相互影响关系,可以将每个大块剥成一个一个的L型,每个L型中格子的合法填充数可以统一考虑,不同L型之间的填充互不影响。
我们以n=6的情况为例。最大的L型n-1个格子组成,这n-1个格子中不能有任意两个相邻的同时填上1。这个L型的合法填法数目(计为F(n))可以由组合方法计算出来:n-1个格子中的1必须都是被0隔开的,相当于把1插入到已有0的空档中。m个0有m+1个空档,则有,其中
在组合数学中我们知道,F(n)就是第n个Fabonacci数(第0,1个都是1)。
每个1/4块的合法填法数目为,从而整个图形的合法填法总数是。
题中2<=n<=500,可以先一次性计算出n<=500的所有F(n),之后只要查表即可。
另外,如果x%y=z,则(x*n)%y=(z*n)%y,利用这一特点可以防止溢出。
PS,如果某个n使得模2012之后是0,那么大于n层的结果也是0。