hdu 3685 Rotational Painting

该博客介绍了如何解决HDU 3685问题,即一个多边形在桌面上稳定放置的条件。关键在于找到凸包上的边,如果多边形的重心到这些边的垂线落在边上,则多边形可以保持不倒。作者指出,必须先计算重心再求凸包,否则可能导致错误。代码实现给出了这个问题的算法思路。
摘要由CSDN通过智能技术生成

模板:点到线段上的最近点  线段交点  graham法求凸包  求凸多边形的重心 


题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3685


题目大意:一个多边形放在桌面上,求有几种放的方式能够使多边形不倒。


解题思路:任何一个放置的方式,肯定由两个点连成的一条边支撑的,分析可知起作用的点是组成该多边形的凸包上的点。若该多边形的重心到凸包上的这条边做的垂线在这条边上,则能站稳。故只需枚举凸包每条边即可。


注:经测试,一定要先求重心再求凸包,否则无限WA啊,不知为何…… 吉大模板上明明写着求重心的时候,要求pnt[]是排好序的啊~ ~ 哪位大神路过,还望解答~


代码实现:

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
using namespace std;
#define N 50010
#define eps 1e-8
struct point
{
    double x;
    double y;
}p[N],res[N];

struct line
{
    point a;
    point b;
};

//求凸包,返回凸包中点的个数,凸包中的点顺时针存在res中。
bool mult(point sp, point ep, point op)
{
    return (sp.x - op.x) * (ep.y - op.y) >= (ep.x - op.x) * (sp.y - op.y);
}
bool operator < (const point &l, const point &r)
{
    return l.y < r.y || (l.y ==r.y && l.x < r.x);
}
int graham(point pnt[], int n)
{
    int i, len, k = 0, top = 1;
    sort(pnt, pnt + n);
    if(n == 0) return 0; res[0] = pnt[0];
    if(n == 1) return 1; res[1] = pnt[1];
    if(n == 2) return 2; res[2] = pnt[2];
    for(i = 2; i < n; i ++)
    {
        while(top && mult(pnt[i], res[top], res[top-1])) top --;
        res[++top] = pnt[i];
    }
    len = top; res[++top] = pnt[n - 2];

    for(i = n - 3; i >= 0; i --)
    {
        while(top != len && mult(pnt[i], res[top], res[top-1]))
            top --;
        res[++top] = pnt[i];
    }
    return top;
}

//求多边形重心,pnt[]已顺时针(或逆时针)排好序

point bcenter(point pnt[], int n)
{
    point p, s;
    double tp, area = 0, tpx = 0, tpy = 0;
    p.x = pnt[0].x; p.y = pnt[0].y;
    for(int i = 1; i<= n; i ++)
    {
        s.x = pnt[(i == n) ? 0 : i].x;
        s.y = pnt[(i == n) ? 0 : i].y;
        tp = (p.x * s.y - s.x * p.y);
        area += tp/2;
        tpx += (p.x + s.x) * tp;
        tpy += (p.y + s.y) * tp;
        p.x =  s.x; p.y = s.y;
    }
    s.x = tpx / (6 * area);
    s.y = tpy / (6 * area);
    return s;
}

//求点到线段上的最近点

double xmult(point p1, point p2, point p0)
{
    return (p1.x - p0.x) * (p2.y - p0.y) - (p2.x - p0.x) * (p1.y - p0.y);
}
double Distance(point p1, point p2)
{
    return sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y));
}
point intersection(point u1, point u2, point v1, point v2)
{
    point ret = u1;
    double t = ((u1.x - v1.x) * (v1.y - v2.y) - (u1.y - v1.y) * (v1.x - v2.x))
              /((u1.x - u2.x) * (v1.y - v2.y) - (u1.y - u2.y) * (v1.x - v2.x));
    ret.x += (u2.x - u1.x) * t;
    ret.y += (u2.y - u1.y) * t;
    return ret;
}
point ptoseg(point p, point l1, point l2)
{
    point t = p;
    t.x += l1.y - l2.y;
    t.y += l2.x - l1.x;
    if(xmult(l1, t, p) * xmult(l2, t, p) > eps)
        return Distance(p, l1) < Distance(p, l2)? l1:l2;
    return intersection(p, t, l1, l2);
}

//判断点是否在线段上
int ponls(line l, point p)
{
    return xmult(l.b, p, l.a) < eps && (((p.x - l.a.x) * (p.x - l.b.x) < 0)
    || ((p.y - l.a.y) * (p.y - l.b.y) < 0));
}


int  main()
{
    int t, n;
    scanf("%d", &t);
    while(t --)
    {
        scanf("%d", &n);
        int cnt = 0;
        for(int i = 0; i < n; i ++)
        {
            scanf("%lf %lf", &p[i].x, &p[i].y);
        }
        point gravity = bcenter(p, n);
        int pnum = graham(p, n);
        for(int i = 0; i < pnum; i ++)
        {
            point mp = ptoseg(gravity, res[i], res[i+1]);
            line l;
            l.a = res[i];
            l.b = res[i+1];
            if(ponls(l, mp))
                cnt ++;
        }
        printf("%d\n", cnt);

    }
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值