状态压缩DP POJ 2411 Mondriaan's Dream

【题目链接】http://poj.org/problem?id=2411

【题目大意】求用1*2的矩形格子填满n*m的格子的方案数 ,1*2的格子可以横着放也可以竖着放

【解题思路】用11表示格子横着放, 01表示格子竖着放(0在该行,1在下一行)。这样按行dp只需要考虑两件事儿,当前行&上一行,是不是全为1,不是说明竖着有空(不可能出现竖着的00),另一个要检查当前行里有没有横放的,但为奇数的1。

【状态表示】dp[state][i]第i行状态为state时候的方案数 

【转移方程】dp[state][i] += dp[state'][i-1] state'为i-1行的,不与i行状态state冲突的状态

【边界条件】第一行 符合条件的状态记为1 即dp[state][0] = 1;

【代码实现】

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
#define N 11
int n, m, tot;
bool pre[1 << N];
long long dp[1 << N][N];
bool check_1(int x)
{
    int num_1 = 0;
    while(x > 0)
    {
        if(x & 1) num_1 ++;
        else
        {
            if(num_1 & 1) return false;
            num_1 = 0;
        }
        x >>= 1;
    }
    if(num_1 & 1) return false;
    return true;
}

bool check_2(int x, int y)
{
    if((x | y) != tot - 1) return false;
    return pre[x & y];
}


void init()
{
    int temp = 1 << N;
  //  memset(pre, 0, sizeof(pre));
    for(int i = 0; i < temp;i ++)
    {
        if(check_1(i)) pre[i] = 1;
    }
}
int  main()
{
    init();
    while(~scanf("%d %d", &n, &m) && n + m)
    {

        tot = 1 << m;
        memset(dp, 0, sizeof(dp));
        for(int i = 0; i < tot; i ++)
        {
            if(pre[i]) dp[i][0] = 1;
        }
        for(int i = 1; i < n; i ++)
        {
            for(int j = 0; j < tot; j ++)
            {
                for(int k = 0; k < tot; k ++)
                {
                    if(!check_2(j, k)) continue;
                    dp[j][i] += dp[k][i-1];

                }
            }
        }
        printf("%lld\n", dp[tot-1][n-1]);
    }

    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值