【题目链接】http://poj.org/problem?id=2411
【题目大意】求用1*2的矩形格子填满n*m的格子的方案数 ,1*2的格子可以横着放也可以竖着放
【解题思路】用11表示格子横着放, 01表示格子竖着放(0在该行,1在下一行)。这样按行dp只需要考虑两件事儿,当前行&上一行,是不是全为1,不是说明竖着有空(不可能出现竖着的00),另一个要检查当前行里有没有横放的,但为奇数的1。
【状态表示】dp[state][i]第i行状态为state时候的方案数
【转移方程】dp[state][i] += dp[state'][i-1] state'为i-1行的,不与i行状态state冲突的状态
【边界条件】第一行 符合条件的状态记为1 即dp[state][0] = 1;
【代码实现】
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
#define N 11
int n, m, tot;
bool pre[1 << N];
long long dp[1 << N][N];
bool check_1(int x)
{
int num_1 = 0;
while(x > 0)
{
if(x & 1) num_1 ++;
else
{
if(num_1 & 1) return false;
num_1 = 0;
}
x >>= 1;
}
if(num_1 & 1) return false;
return true;
}
bool check_2(int x, int y)
{
if((x | y) != tot - 1) return false;
return pre[x & y];
}
void init()
{
int temp = 1 << N;
// memset(pre, 0, sizeof(pre));
for(int i = 0; i < temp;i ++)
{
if(check_1(i)) pre[i] = 1;
}
}
int main()
{
init();
while(~scanf("%d %d", &n, &m) && n + m)
{
tot = 1 << m;
memset(dp, 0, sizeof(dp));
for(int i = 0; i < tot; i ++)
{
if(pre[i]) dp[i][0] = 1;
}
for(int i = 1; i < n; i ++)
{
for(int j = 0; j < tot; j ++)
{
for(int k = 0; k < tot; k ++)
{
if(!check_2(j, k)) continue;
dp[j][i] += dp[k][i-1];
}
}
}
printf("%lld\n", dp[tot-1][n-1]);
}
return 0;
}