题目:
你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。
给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,今晚能够偷窃到的最高金额。
示例 1:
输入:nums = [2,3,2]
输出:3
解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。
示例 2:
输入:nums = [1,2,3,1]
输出:4
解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4 。
示例 3:
输入:nums = [1,2,3]
输出:3
代码:
思想:动态规划+分而治之
class Solution {
public int rob(int[] nums) {
if(nums == null || nums.length == 0){
return 0;
}
int len = nums.length;
if(len == 1){
return nums[0];
}
if(len == 2){
return Math.max(nums[0], nums[1]);
}
// return Math.max(roll(nums, 0, len-1), roll(nums, 1, len));
return Math.max(roll(Arrays.copyOfRange(nums, 0, len-1)), roll(Arrays.copyOfRange(nums, 1, len)));
}
// public int roll(int[] nums, int start, int end){
// int x = 0, y = 0, z = 0;
// for(int i = start; i < end; i++){
// y = z;
// z = Math.max(y, x + nums[i]);
// x = y;
// }
// return z;
// }
public int roll(int[] nums){
int len = nums.length;
int[] dp = new int[len+1];
dp[0] = nums[0];
dp[1] = Math.max(nums[0], nums[1]);
for(int i = 2; i < len; i++){
dp[i] = Math.max(dp[i-2] + nums[i], dp[i-1]);
}
return dp[len-1];
}
}