打家劫舍2

本文介绍了一个使用动态规划和分而治之策略解决编程问题的例子,具体场景为一个专业小偷在环形街道上选择房屋进行盗窃,避免触发相邻防盗系统。通过给出的示例代码,解释了如何计算在不触动警报的情况下,能够盗取的最高金额。动态规划方法通过维护前两个最大值来决定当前位置的最大盗窃金额。
摘要由CSDN通过智能技术生成

题目:

你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。

给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,今晚能够偷窃到的最高金额。

示例 1:
输入:nums = [2,3,2]
输出:3
解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。

示例 2:
输入:nums = [1,2,3,1]
输出:4
解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。
     偷窃到的最高金额 = 1 + 3 = 4 。
     
示例 3:
输入:nums = [1,2,3]
输出:3

代码:

思想:动态规划+分而治之

class Solution {
    public int rob(int[] nums) {
        if(nums == null || nums.length == 0){
            return 0;
        }
        int len = nums.length;
        if(len == 1){
            return nums[0];
        }

        if(len == 2){
            return Math.max(nums[0], nums[1]);
        }
        // return Math.max(roll(nums, 0, len-1), roll(nums, 1, len));
        return Math.max(roll(Arrays.copyOfRange(nums, 0, len-1)), roll(Arrays.copyOfRange(nums, 1, len)));
    }
    // public int roll(int[] nums, int start, int end){
    //     int x = 0, y = 0, z = 0;
    //     for(int i = start;  i < end; i++){
    //         y = z;
    //         z = Math.max(y, x + nums[i]);
    //         x = y;
    //     }
    //     return z;
    // }
    public int roll(int[] nums){
        int len = nums.length;
        int[] dp = new int[len+1];
        dp[0] = nums[0];
        dp[1] = Math.max(nums[0], nums[1]);
        for(int i = 2; i < len; i++){
            dp[i] = Math.max(dp[i-2] + nums[i], dp[i-1]);
        }
        return dp[len-1];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浪子私房菜

给小强一点爱心呗

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值