Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
此题可谓一波三折, 先贴一个本人的错误代码:
class Solution {
public:
int minimumTotal(vector<vector<int> > &triangle)
{
int row = triangle.size();
if(row==1)
return triangle[0][0];
int result[row];
memset(result,0,sizeof(result));
int i,j;
int temp1,temp2;
result[0] = result[1] = triangle[0][0];
for(i=1;i<row;i++)
{
temp1 = result[0];
temp2 = result[i-1];
for(j=1;j<i;j++)
{
if(result[j-1]<result[j])
result[j] = result[j-1]+triangle[i][j];
else
result[j] = result[j]+triangle[i][j];
}
result[0] = temp1 + triangle[i][0];
result[i] = temp2 + triangle[i][i];
}
sort(result,result+row);
return result[0];
}
};
错误原因是, 在更新result[j]时,会对下一次的判断有影响. 因为下一次要用到restult[j-1]
正确的代码只是稍微修改了一下, 从后往前更新, 这样就避免了影响
class Solution {
public:
int minimumTotal(vector<vector<int> > &triangle)
{
int row = triangle.size();
if(row==1)
return triangle[0][0];
int result[row];
memset(result,0,sizeof(result));
int i,j;
int temp1,temp2;
result[0] = result[1] = triangle[0][0];
for(i=1;i<row;i++)
{
temp1 = result[0];
temp2 = result[i-1];
for(j=i-1;j>=1;j--)
{
if(result[j-1]<result[j])
result[j] = result[j-1]+triangle[i][j];
else
result[j] = result[j]+triangle[i][j];
}
result[0] = temp1 + triangle[i][0];
result[i] = temp2 + triangle[i][i];
}
sort(result,result+row);
return result[0];
}
};