数论
文章平均质量分 57
nixinyis
这个作者很懒,什么都没留下…
展开
-
bzoj 2190 [SDOI2008]仪仗队
题目 2190: [SDOI2008]仪仗队 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 1939 Solved: 1237 [Submit][Status][Discuss] Description 作为体育委员,C君负责这次运动会仪仗队的训练。仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟原创 2015-12-24 22:44:23 · 732 阅读 · 0 评论 -
bzoj1008 [HNOI2008]越狱
为了防止我做的题又突然变成权限题,我还是直接复制下来吧 1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MB Submit: 6338 Solved: 2707 [Submit][Status][Discuss] Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,原创 2016-01-20 22:55:22 · 305 阅读 · 0 评论 -
【BZOJ 1303】 【CQOI2009】中位数图
Description给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b。中位数是指把所有元素从小到大排列后,位于中间的数。Input第一行为两个正整数n和b ,第二行为1~n 的排列。Output输出一个整数,即中位数为b的连续子序列个数。Sample Input7 4 5 7 2 4 3 1 6Sample Output4HINT第三个样例解释:{4}, {7,2,4}原创 2017-02-19 15:40:17 · 217 阅读 · 0 评论 -
【BZOJ 2257】【JSOI 2009】瓶子和燃料 【裴蜀定理】
Descriptionjyy就一直想着尽快回地球,可惜他飞船的燃料不够了。 有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子来换。jyy 的飞船上共有 N个瓶子(1<=N<=1000) ,经过协商,火星人只要其中的K 个 。 jyy 将 K个瓶子交给火星人之后,火星人用它们装一些燃料给 jyy。所有的瓶子都没有刻度,只在瓶口标注了容量,第i个瓶子的容量为Vi(Vi 为整数原创 2017-02-19 16:38:04 · 378 阅读 · 0 评论 -
【BZOJ 3629】【JLOI 2014】聪明的燕姿【约束和+dfs】
Description阴天傍晚车窗外 未来有一个人在等待 向左向右向前看 爱要拐几个弯才来 我遇见谁会有怎样的对白 我等的人他在多远的未来 我听见风来自地铁和人海 我排着队拿着爱的号码牌 城市中人们总是拿着号码牌,不停寻找,不断匹配,可是谁也不知道自己等的那个人是谁。可是燕姿不一样,燕姿知道自己等的人是谁,因为燕姿数学学得好!燕姿发现了一个神奇的算法:假设自己的号码牌上写着数字S,那原创 2017-02-26 14:07:37 · 404 阅读 · 0 评论 -
【BZOJ 2705】【SDOI 2012】Longge的问题【欧拉函数】
Description给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N)。题解这道题考虑每一种gcd的值会出现多少次,即n的每个约数会出现多少次。对于gcd(b,n)=a, gcd(b/a,n/a)=1,所以gcd=a的值就是φ(n/a), 所以对于n每个因子a,ans=Σphi(n/a)*a可以在sqrt(n)范围内枚举n的因子,并求出其欧拉函数值代码#include<cstdi原创 2017-03-07 20:19:35 · 210 阅读 · 0 评论 -
【BZOJ 3884】上帝与集合的正确用法【欧拉定理】&【剧毒题】
Description题解来自出题人的剧毒题解 代码#include<cstdio> #include<cstring> #include<algorithm> using namespace std;int phi(int x) { int res = x; for(int i = 2;i*i <= x;i++) if(x % i == 0) {原创 2017-03-21 18:54:03 · 314 阅读 · 0 评论 -
欧拉筛(线性筛)& 欧拉函数
今天又复习了一下欧拉筛法,在这做个笔记。欧拉筛(线性筛)一般情况下,有一种筛法叫埃什么什么的。是O(n log log n),非常接近于O(n),但也会有坑爹的出题人来个10000000故意卡你。原理这可能原理有点妙啊。 设pr[i]为i最小质因子,然后从2开始计算 如果pr[i]没有在前面得到,就说明i是质数,所以pr[i]=i,prime[++len] = i。 对于i,枚举每一个不超过pr[i原创 2017-03-20 19:38:37 · 2020 阅读 · 1 评论