Object Detection in Videos with Tubelet Proposal Networks翻译

文章地址Object Detection in Videos with Tubelet Proposal Networks 废话不多说,直接翻译,还是只翻译方法部分,相关工作、结果和结论就不多说了。 Abstract 随着大规模ImageNet VID数据集的出现,视频目标检测得到了越来越多的关注...

2019-02-12 22:54:31

阅读数 30

评论数 0

Object detection from video tubelets with CNN翻译

代码地址code 文章地址Object Detection from Video Tubelets with Convolutional Neural Networks 这篇是港大的Kai Kang 16年发表在CVPR上的,讲了视频中的目标检测。这篇是我毕设要看的论文,并且我也没有看到有好的...

2019-02-01 22:37:20

阅读数 35

评论数 0

Fast R-CNN阅读笔记

文章地址Fast R-CNN 代码地址code 这篇是Ross大神15年写的,通过一些改进让R-CNN变得更快了,在VGG16网络上训练的时候快了9倍,测试的时候快了213倍,在PASCAL VOC2012上的mAP也提高了。 Object detection主要有两个挑战:1、对目标所在位...

2019-01-29 22:33:28

阅读数 18

评论数 0

R-CNN论文阅读笔记

先把文章地址放在这Rich feature hierarchies for accurate object detection and semantic segmentation 代码地址也放在这code 作者在摘要中说这个方法主要有两个创新:一是可以在候选区域Region Proposal上...

2019-01-25 23:18:20

阅读数 23

评论数 0

ImageNet with Deep CNN阅读笔记

本来直接看的R-CNN那篇文章的,结果发现network architecture部分一脸懵,只能悄悄找到最原始的这篇看,R-CNN是基于这篇文章的网络结构的。我的学习过程真的是小白进步史,要从最简单的一步步学起。 文章是在ImageNet那个比赛识别MNIST数据集的,正好承接了上本我看完的N...

2019-01-23 22:43:32

阅读数 55

评论数 0

Neural network and deep learning阅读笔记(7)代码

先是全连接层的代码: class FullyConnectedLayer(object): def __init__(self, n_in, n_out, activation_fn=sigmoid, p_dropout=0.0): self.n_in = n_in self.n_out...

2019-01-20 20:44:39

阅读数 19

评论数 0

Neural network and deep learning阅读笔记(6)深度学习

这一章介绍了卷积神经网络——在深度学习中非常常用的一种网络,先建立简单的网络,然后添加很多增强网络能力的方法:卷积、池化、GPU、dropout等等。这一章建立的网络很强大,正确率达到99.67%,识别错误的数字很多是人眼也无法正确识别的。还会提到RNN、LSTM单元,如何在语音识别、自然语言处理...

2019-01-15 21:40:51

阅读数 1356

评论数 2

Neural network and deep learning阅读笔记(5)梯度消失问题

之前我们都是处理一层隐藏层的神经网络,但是在处理实际问题中,一层隐藏层往往不够,所以我们需要多层隐藏层: 比如,当我们在处理视觉模式识别问题时,第一层可能用来识别边缘,第二层可以识别稍微复杂的形状,比如三角形,第三层处理更加复杂的图形,以此类推,到最后我们可以识别非常复杂的物体。所以理论上来说,...

2019-01-14 22:11:13

阅读数 255

评论数 0

Neural network and deep learning阅读笔记(4)神经网络学习方式

Weight initialization 在第一章创建神经网络的时候,曾经对weight和biases进行过初始化,当时是使用了两个独立高斯随机变量(均值为0,标准差为1),这一节看看有没有更好的初始化方法。假设我们现在有一个神经网络有1000个输入神经元,输入层到第一层隐藏层的权重是高斯分布...

2019-01-08 22:37:43

阅读数 43

评论数 0

Neural networks and deep learning阅读笔记(3)神经网络学习方式

这一章介绍了一些搭建网络的方式和技巧,可以帮助我们的网络更好的学习,包括:一种更好的损失函数叫cross-entropy交叉熵损失函数;四种“正则化”方法(L1和L2正则化、dropout、训练数据的artificial expansion);更好的初始化权重的方法;一些帮助我们选择超参数hype...

2019-01-02 20:04:43

阅读数 167

评论数 0

Neural networks and deep learning阅读笔记(2)后向传播算法

Neural networks and deep learning阅读笔记(2)后向传播算法 上一章主要是梯度下降算法,但是如何计算cost function的梯度没有详细讲,这一章就主要讲了一种计算梯度的算法——backpropagation后向传播算法。这一章有很多数学emmm慢慢推吧,后向传...

2019-01-01 21:46:13

阅读数 867

评论数 0

Neural Networks and Deep Learning阅读笔记(1)手写字符识别

Neural Networks and Deep Learning阅读笔记(1)手写字符识别 刚开始开始学习深度学习,找了一本比较简单的书来看看,顺便记个笔记。我是那种不记笔记估计看完一页忘一页的人╮(╯▽╰)╭嘻嘻嘻 emmm这篇笔记就是我自己的碎碎念啦,不严谨而且中英文随便换着用 第一章...

2018-12-14 22:34:00

阅读数 94

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭