【BZOJ1003】【DP】【最短路】物流运输

一开始把这道题想得有点复杂。因为可能有很多种情况,比如k值很大每次都用次短路结果最优,或者k值很小每次都用最短路结果最优,如果还要变化的话就更复杂了。但其实后来一想,我们只需要暴力枚举出每一段时间,用cost(s,t)表示在[s,t]这段时间中的最小费用,然后DP:f[i] = min(cost(1,i),f[j] + cost(j+1,i) + k)

这样问题就顺利解决了。

代码:

#include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int inf = 0x3f3f3f3f;
const int maxn = 100 + 10;
const int maxm = maxn * maxn;
struct pnode
{
	int d,w;
	pnode *next;
	pnode(){}
	pnode(int d,int w,pnode *next):d(d),w(w),next(next){}
}*first[maxn],__[maxm],*tot = __;
bool flag[maxn][maxn],done[maxn];
int dis[maxn],t[maxn],sum[maxn],f[maxn];
int n,m,k,e,d;
void init()
{
	freopen("bzoj1003.in","r",stdin);
	freopen("bzoj1003.out","w",stdout);
}

void readdata()
{
	memset(flag,true,sizeof(flag));
	scanf("%d%d%d%d",&n,&m,&k,&e);
	for(int i = 1;i <= e;i++)
	{
		int x,y,z;
		scanf("%d%d%d",&x,&y,&z);
		first[x] = new(tot++)pnode(y,z,first[x]);
		first[y] = new(tot++)pnode(x,z,first[y]);
	}
	scanf("%d",&d);
	for(int i = 1;i <= d;i++)
	{
		int p,a,b;
		scanf("%d%d%d",&p,&a,&b);
		for(int j = a;j <= b;j++)flag[p][j] = false;
	}
}

int cost(int s,int t)
{
	memset(dis,0x3f,sizeof(dis));
	memset(done,false,sizeof(done));
	typedef pair<int,int>pii;
	priority_queue<pii,vector<pii>,greater<pii> >q;
	for(int i = 1;i <= m;i++)
	{
		for(int j = s;j <= t;j++)
		{
			if(!flag[i][j])
			{
				done[i] = true;
				break;
			}
		}
	}
	dis[1] = 0;
	q.push(make_pair(dis[1],1));
	while(!q.empty())
	{
		pii u = q.top();q.pop();
		if(done[u.second])continue;
		int k = u.second;
		for(pnode *p = first[k];p != NULL;p = p -> next)
		{
			if(done[p->d])continue;
			if(dis[k] + p -> w < dis[p->d])
			{
				dis[p->d] = dis[k] + p -> w;
				q.push(make_pair(dis[p->d],p->d));
			}
		}
	}
	if(dis[m] == inf)return dis[m];
	else return dis[m] * (t - s + 1);
}

void solve()
{
	for(int i = 1;i <= n;i++)
	{
		 f[i] = cost(1,i);
		 for(int j = 2;j < i;j++)
		 {
			 f[i] = min(f[i],f[j] + cost(j + 1,i) + k);
		 }
	}
	printf("%d",f[n]);
}

int main()
{
	init();
	readdata();
	solve();
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值