数据结构:检查一个二叉树是否是二叉搜索树

二叉搜索树

判断是否左子树都小于根节点都小于右子树
判断当前三个结点大小,递归

bool IsSubtreeLesser(Node* root, int value) {
	if(root==NULL) return true;
	if (root->data <= value)
		return true;
	return false;
}
bool IsSubtreeGreater(Node* root, int value) {
	if(root==NULL) return true;
	if (root->data >= value)
		return true;
	return false;
}

对比一下,

bool IsSubtreeLesser(Node* root, int value) {
	if(root==NULL) return true;
	if (root->data <= value && IsSubtreeLesser(root->left, value)
		&& IsSubtreeGreater(root->right, value))
		return true;
	return false;
}
bool IsSubtreeGreater(Node* root, int value) {
	if(root==NULL) return true;
	if (root->data >= value&&IsSubtreeLesser(root->left, value)
		&& IsSubtreeGreater(root->right, value))
		return true;
	return false;
}

上面情况是只进行该结点的比较,而下面情况是在比较的时候就进行了递归.上面只能保证在三个结点里的大小顺序,而下面的可以保证该结点以下都是二叉搜索树。

bool IsBinarySearchTree(Node* root) {
	if (root == NULL)
		return true;
	if (IsSubtreeLesser(root->left, root->data)
		&& IsSubtreeGreater(root->right, root->data)
		&& IsBinarySearchTree(root->left)
		&& IsBinarySearchTree(root->right))
		return true;
	return false;
}

或者,
在代码中,我们记录最大最小值,即结点值的范围区间。

bool IsBinarySearchTree(Node* root,int minValue,int maxValue) {
	if (root == NULL)
		return true;
	if (root->data>=minValue
		&&root->data<= maxValue
		&& IsBinarySearchTree(root->left,minValue,root->data)
		&& IsBinarySearchTree(root->right,root->data,maxValue))
		return true;
	return false;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值