- 博客(201)
- 收藏
- 关注
原创 hugging face 文本生成3d模型链接|三视图重建相关论文
https://huggingface.co/models?pipeline_tag=text-to-3d
2025-06-12 08:51:14
24
原创 transformer笔记2
注:严格来说,原始Transformer编码器-解码器结构是前馈的,但某些变体(如引入循环模块)可能例外。,没有循环或反馈连接。(请注意理解这句话,对于我们学习神经网络非常重要!:虽然通过自注意力机制建模长距离依赖,但数据仍是单向传播(无循环连接)。
2025-06-11 17:21:58
160
原创 MeshGPT 笔记
[2311.15475] MeshGPT: Generating Triangle Meshes with Decoder-Only Transformershttps://library.scholarcy.com/try真正意义上的AI生成三维模型MESHGPT来袭!_哔哩哔哩_bilibiliGitHub - lucidrains/meshgpt-pytorch: Implementation of MeshGPT, SOTA Mesh generation using Attention, in P
2025-06-09 10:55:34
295
原创 chili3d 笔记17 c++ 编译hlr 带隐藏线工程图
这个要注册不然emscripten编译不起来。deepwiki写occ代码真的强。printf无效,要用cout。
2025-06-07 22:41:37
333
原创 chili3d 笔记16 emscripten配置 |用cnpm i 安装 |hello world 编译
总结,加环境变量,bootstrap一下就好了
2025-06-06 21:08:31
216
原创 PolyGen:一个用于 3D 网格的自回归生成模型 论文阅读
体素是一个三维空间中的立方体单元,它具有特定的坐标位置和大小。通常,体素可以表示为一个包含位置信息(如 x、y、z 坐标)和属性值(如密度、颜色、材料等)的三维数据元素。体素是构建复杂三维物体或场景的基本组成部分,通过集合大量的体素,可以近似表示出复杂的三维形状和结构。
2025-06-02 22:03:38
1339
2
原创 seq2seq 视频截图
attention允许用hello预测bonjour而不是用句号预测。attention用在decoder。只看前几个,后面有可能是被pad掉的。找对应的句子做加权平均。
2025-06-01 10:32:04
248
原创 transformer 输入三视图线段输出长宽高 笔记
src = src.view(batch_size, -1, self.input_dim) # 展平为 [batch_size, 24, 8]# 将输入数据展平,形状变为 [batch_size, 24, 8],其中24是线段总数(3视图 * 4线段)test_input = torch.rand(1, 3, 4, 2, 2) # 随机生成测试数据。input_data = torch.rand(1, 3, 4, 2, 2) # 随机生成输入数据。nhead = 8 # 多头注意力的头数。
2025-05-31 23:59:32
690
原创 lstm 长短期记忆 视频截图 kaggle示例
换参数和激活函数tan激活函数输出带正负符号的百分比tanx公式长这样?潜在短期记忆前几天都是乱预测(实际)
2025-05-31 19:03:47
600
原创 PlankAssembly 笔记 DeepWiki 正交视图三维重建
PlankAssembly旨在从三个正交视图的工程图纸中进行鲁棒的3D重建,使用学习到的形状程序来表示3D结构 README.md:3。项目支持三种类型的输入:可见和隐藏线条、仅可见边缘、以及侧面视图 README.md:38。在PlankModel的初始化中,定义了5个embedding层,每个都将离散索引映射到512维向量: models.py:47-53这里是配置参数,定义了embedding的输出维度。去学embedding了PlankAssembly系统的输入和输出数据格式不一致。
2025-05-30 18:06:44
674
原创 基于三个正交视图三维重建PlankAssembly: Robust 3D Reconstruction from Three Orthographic Views with Learnt Shape
基于学习形状程序的三个正交视图的鲁棒三维重建。
2025-05-29 22:40:00
405
原创 计算几何 视频截图
如果是二维空间(平面)中,两个不共线(即不平行)的向量可以张成整个二维空间,也就是说,它们的线性组合可以覆盖整个平面。在三维或更高维空间中,两个不平行的向量只能张成一个二维的子空间(即一个平面),不能布满整个空间。严格证明向量的加权平均总是位于其组成部分向量的连线上。2个方程3个未知数,无穷解。
2025-05-29 21:44:17
289
原创 一种基于带尺寸正投影视图的三维物体重建方案A Scheme For 3d Object Reconstruction From Dimensioned Orthographic Views 论文笔记
在过去的二十年中,从二维正投影视图进行三维物体重建一直是主要的研究课题。现有的算法假设基于坐标、无误差的输入和专家认可。本文提出的方法提供了一种自动化的三维物体重建过程,该过程模仿了熟练的人类智能。通过结合变分几何、矩阵代数和图论方法的元素,该方法融入了对二维工程图纸、拓扑关系和尺寸方案分析的高级理解,针对每个二维视图。每个视图的尺寸标注方案被合并成整个物体的通用尺寸标注方案。我们介绍了该方法的原理,并通过一个简单示例进行了演示。1. 引言与动机。
2025-05-29 17:51:19
565
1
原创 pythonocc hlr实例 deepwiki 显示隐藏线
直接在pythonocc页面底下问,ai再也不会import自创类名了,带着文档编码的,
2025-05-29 00:11:53
175
原创 micromamba安装 配置 pythonocc安装
今天conda装pythonocc装不起来。新建一个micromamba目录。系统环境变量加入这个目录。
2025-05-28 23:46:55
293
原创 freecad TechDraw工作台中虚线(隐藏线)的实现方式
虚线实现涉及三个主要层面:几何处理(HLR算法确定可见性)、样式定义(线型生成器)和渲染(QPen应用)。系统还支持用户自定义的几何格式,可以覆盖默认的隐藏线样式。对于隐藏线,系统会应用特殊的线型样式: QGIViewPart.cpp:393-399。方法决定是否显示特定的边,包括隐藏线: QGIViewPart.cpp:480-487。等属性控制不同类型隐藏线的显示: DrawViewPart.cpp:139-146。加载不同的线型选择: DrawGuiUtil.cpp:177-198。
2025-05-28 17:07:00
251
原创 chili3d 笔记15 生成投影工程图
这东西哪怕加载一下启动都会慢半分钟不止注册3件套接下来想办法获得所选物体的所有edge起点终点信息您询问的是如何获得所选物体的所有edge(边)的起点终点信息。根据代码库分析,这涉及到Chili3d的形状系统和网格数据处理。
2025-05-28 16:53:39
400
原创 Denoising Autoencoders 视频截图 DAEs简单实现 kaggle 去噪编码器
一个给定一个输入样本 $ x $,我们人为地向它添加一些噪声,得到一个“损坏”版本 $ \tilde{x} $。然后训练一个神经网络模型,让它从这个被损坏的输入 $ \tilde{x} $ 中尽可能还原出原始的、干净的输入 $ x $。
2025-05-28 09:31:55
1525
原创 brep2seq 论文笔记
A_1(W_a1^m)^T + A_2(W_a2^m)^T + A_3(W_a3^m)^T: 这些项引入了额外的偏置或权重,它们与A_1、A_2和A_3矩阵相乘,并与查询和键的点积结果相加。Q_mK_m^T / √d_k: 这是标准的自注意力机制中的点积注意力(Dot-product attention),其中Q_m和K_m分别是查询(Query)和键(Key)矩阵,d_k是它们的维度。通过引入额外的矩阵A_1、A_2和A_3,该机制能够更好地捕捉和利用输入数据中的结构化信息,如图结构中的边和面的关系。
2025-05-28 00:06:52
916
1
原创 brep2seq 源码笔记2
数学公式是什么def forward(self, noise_1, noise_2, real_z_p=None):else:
2025-05-27 10:54:49
126
原创 自动编码器 潜在空间 Autoencoders 视频截图
【双语】Autoencoders_哔哩哔哩_bilibili 【双语】Autoencoders_哔哩哔哩_bilibili
2025-05-26 20:00:52
179
原创 生成对抗网络(GANs)中的损失函数公式 判别器最优解D^*(x)的推导
这张图片展示的是生成对抗网络(GANs)中的损失函数公式,特别是针对判别器(Discriminator)和生成器(Generator)的优化目标。通过上述公式,我们了解了GAN中判别器和生成器之间的博弈过程,以及如何通过优化损失函数来训练这两个模型,以达到生成高质量样本的目的。这个公式展示了判别器的目标是最大化其对真实样本的识别能力和对生成样本的拒绝能力。:分别代表判别器正确识别真实样本和错误识别生成样本的对数概率。是标签(1表示真实样本,0表示生成样本),:判别器输出的真实样本的概率。
2025-05-26 09:32:11
644
原创 brepgen 源码 笔记2
这些训练器构成了 BrepGen 的分层生成架构:VAE 负责几何特征的编码/解码,位置扩散模型直接生成几何位置,而潜在空间扩散模型在压缩的表示空间中工作,提高了复杂几何数据的生成效率。您询问的是"基于表面位置生成表面几何",这是 BrepGen 系统中第二阶段训练的核心概念,具体指的是 SurfZTrainer 类如何使用表面位置信息作为条件来生成表面的潜在几何特征。"基于表面位置生成表面几何"指的是在已知表面 3D 边界框位置的条件下,生成该表面的详细几何形状。
2025-05-22 16:29:03
984
原创 三视图dxf 生成brep 3d图重建 pythonocc solid
三视图dxf 生成brep 3d图重建 pythonocc solid。如果投影面闭合图形内有内线,生成对应面会失败导致solid生成失败。
2025-05-20 14:28:30
186
c#得到文件夹里面所有文件名称有什么第三方库
2024-12-02
c# 我要window应用程序 打开我的类库插件方法,能调用,调试和得到返回值
2024-06-06
怎么让ai定时给我发信息 c#或者python
2024-06-01
关于#c##的问题:c# winform怎么做到鼠标移开透明,鼠标移入不透明
2024-06-01
c#solidworks 二次开发 工程图标折弯尺寸 ,目前可以标
2024-05-28
TA创建的收藏夹 TA关注的收藏夹
TA关注的人