变种版背包问题:
可以这么理解 父节点背包总重cap,每个子节点拥有重量为Wi,价值为Vi的石头,问将背包填满的最小价值.
解决上述问题,再利用递归就可以求出最小的花费:
求上述问题的思路:
设子节点所有的石头重量和为sum,子节点的个数为count;
申请dp[count][sum+1]的数组,dp[i][j]表示用0-i的石头填满j的最小花费.不能填满的花费为-1;
所以dp[0][0]到dp[0][w0]都等于v0;
对于dp[i][j]分为下列情况:
如果j<=w[i]并且dp[i-1][j]>=0 那么dp[i][j]=min(v[i],dp[i-1][j]);
如果j<=w[i]并且dp[i-1][j]<0 那么dp[i][j]=v[i];
如果j>w[i] 并且dp[i-1][j-w[i]]<0 那么dp[i][j]=-1;
如果j>w[i] 并且dp[i-1][j-w[i]]>=0 那么dp[i][j]=dp[i-1][j-w[i]]; //如果dp[i-1][j-w[i]+1]比dp[i-1][j-w[i]]小,那么因为j-w[i]+1是大于j-w[i]的所以这是不可能成立的.
以上为递归式,最后求出从dp[count][cap]到dp[count][sum]的最小值即可.