Dijkstra算法和Floyd算法求最短路径

**

Dijkstra算法和Floyd算法求最短路径

在这里插入图片描述
**

第一次写博客同时记录自学数据结构Dijkstra算法和Floyd算法的过程。
Dijkstra算法是解决单元最短路径的比较有效一种方法,而Floyd算法是解决多源最短路径问题的方法。

先进行一些准备工作–定义

//采用邻接矩阵的方式存储图
//邻接矩阵的结构体定义
typedef struct{
    ElemType **a;     //邻接矩阵
    int n;            //图的当前顶点数
    int e;            //图的当前边数
    ElemType noEdge;  //两顶点间无边时的值
}mGraph;


//邻接矩阵的初始化
Status Init(mGraph *mg,int nSize,ElemType noEdgeValue){
    int i,j;
    mg->n=nSize;                 //初始化顶点数
    mg->e = 0;                   //初始化时没有边
    mg->noEdge = noEdgeValue;    //初始化没有边时的取值
    mg->a = (ElemType**)malloc(nSize*sizeof(ElemType *));  //生成长度为n的一维指针数组  ★★★★★
    if(!mg->a) return ERROR;
    for(i = 0;i < mg->n;i++){   //动态生成二维数组
        mg->a[i] = (ElemType*)malloc(nSize*sizeof(ElemType));
        for(j = 0;j < mg->n;j++){
            mg->a[i][j] = mg->noEdge;  //初始化时权重都设为INF
        }
        mg->a[i][i] = 0;        //自回路设置为0
    }
    cout<<"初始化成功!"<<endl;
    return OK;
}
//邻接矩阵的边的插入
Status Insert(mGraph *mg,int u,int v,ElemType w){
    if(u < 0||v < 0||u > mg->n-1||v > mg->n-1 ||u == v) return ERROR;//u==v时不构成边
    if(mg->a[u][v] != mg->noEdge) return Duplicate;  //若待插入边已存在,则返回出错信息
    mg->a[u][v] = w;                                 //插入新边
    mg->e ++;                                        //增加一条边
    return OK;
}

Dijkstra算法示例演示:

带权有向图示例
我们的主要思路如下:

  1. 我们用两个集合S和U进行操作,定义两个数组dist和path分别用于存储到源点的最短距离以及某点到源点最短距离的路径。同时我们初始化S集合为一个源点u,并更新dist和path数组的值。//path实际上是存储最短路径中每个结点的前驱,例如path[1]=0,在该最短路中,0是1的前驱。
  2. 接着我们从U集合中剩下的点中遍历出到源点距离最小的点并把它加入到S中,更新dist和path。这样一来,由于不断更新dist和path,我们可以保证每次加入的点到源点的距离最小,这条路径也就是最短路径。
  3. 重复2操作,直至U中没有剩余结点。

示例演示如下:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Dijkstra算法的代码如下:

//递归输出最短路径(用迭代也是可以的)
void outputpath(int path[],int st,int en)
{
    if(en==st) {cout<<en<<" ";return;}
    else {outputpath(path,st,path[en]);cout<<en<<" ";}
}
//狄克斯特拉算法
void Dijkstra(mGraph g,int v,int en)
{
    int dist[MAXV],path[MAXV];
    int s[MAXV];//用来构建图的集合,该集合中的任何点都已构建好最短路径的图,表示顶点i是否在其中
    int mindis,i,j,u;
    for(i=0;i<g.n;i++)
    {
        dist[i]=g.a[v][i];//图中各点到v的距离初始化
        s[i]=0;           //s[]置空
        if(g.a[v][i]<INF) //路径初始化
            path[i]=v;    //顶点v到i有边
        else
            path[i]=-1;   //顶点v到i没边
    }
    s[v]=1;               //将起点v添加到s集合中
    for(i=0;i<g.n;i++)    //循环n-1次对剩下的顶点操作
    {
        mindis=INF;
        for(j=0;j<g.n;j++)//这一遍循环后得到目前到原点最短距离的点的下标u,同时更新最短距离mindis
        {
            if(s[j]==0&&dist[j]<mindis)
            {
                u=j;
                mindis=dist[j];
            }
        }
        s[u]=1;
        for(j=0;j<g.n;j++)//该循环用来修正不在s中的点到原点的最短距离
            if(s[j]==0)   //代表该点不在集合s中
            if(g.a[u][j]<INF&&(dist[u]+g.a[u][j]<dist[j])) //u、j之间有路且从原点到u再到j的距离更短
            {
                dist[j]=dist[u]+g.a[u][j];              //修正最短路径
                path[j]=u;                              //记录路径,j的前一个顶点u
            }
    }
    cout<<"最短的路径为:"<<endl;
    outputpath(path,v,en);
}

Floyd算法示例演示如下:

在这里插入图片描述
(由于做图软件原因?‍,说明一下:1->2的权值为4,2->1=3,2->3=2,3->2=1)
我们的思路如下:

  1. 我们定义两个二维数组A[u][v]和path[i][j],矩阵A存储点u到v的最短距离,path用来记录最短距离的路径。如path[i][j]存储的是起始点为i,终点为j的最短路径中,终点j的前驱结点。首先我们初始化矩阵A中直接相连边的距离,未直接相连的边我们初始化为∞(但这里无穷大的定义要防止溢出问题!!!起初定义矩阵A为int型,发现初始化出来的距离是负值,后来将A定义为longlong后解决了),path同初始化为直接相连的两点的前驱,如path[0][1]=0。此时,事实上我们已经考虑了图中任意的2个点。
  2. 接着我们不断加入新的点k进行比较,如果我们先前加入的点u、v构成的路径u->…->v的距离不如我们从u先到k再到v短即u->…->k->…->v短,那么我们将k考虑进来后的距离和路径更新到A和path数组中。
    在这里插入图片描述
    这部分操作其实是通过遍历在每两个点之间进行的,我们可以理解成点与点之间不断连线再擦掉,最终保留最短的的线段形成了一条最短路径。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

Floyd算法代码如下:

//floyd算法
void floyd(mGraph g) //O(n立方)
{
    ll A[MAXV][MAXV];   //求每对顶点之间的最短路径
    int path[MAXV][MAXV];//建立A数组
    int i,j,k;           //建立path数组
    for(i=0;i<g.n;i++)   //A和path数组的初始化
    {   for(j=0;j<g.n;j++)
        {
            A[i][j]=g.a[i][j];
            if(i!=j&&g.a[i][j]<INF)
                path[i][j]=i;//i和j顶点之间有一条边时
            else
                path[i][j]=-1;//i和j顶点之间没有边
        }
    }
    for(k=0;k<g.n;k++)        //求Ak[i][j],即考虑了0-k个顶点后,i到j的最短距离。这个循环在依次考虑0-k个点
        for(i=0;i<g.n;i++)
            for(j=0;j<g.n;j++)
               if(i!=j&&A[i][j]>A[i][k]+A[k][j])//找到更短路径即经过k的路径
               {
                   A[i][j]=A[i][k]+A[k][j];//修改路径长度
                   path[i][j]=path[k][j];  //修改最短路经过k,即j的前一个顶点
               }
    cout<<"请输入起点编号v,以及终点编号u:"<<endl;
    int v,u;
    cin>>v>>u;
    cout<<"最短的路径为:"<<endl;
    outputpath(path,v,u);
}

完整代码如下:

#include <iostream>
#include<bits/stdc++.h>
#define ERROR 0
#define OK 1
#define Overflow 2    //表示上溢
#define Underflow 3   //表示下溢
#define NotPresent 4  //表示元素不存在
#define Duplicate 5   //表示有重复元素
#define MAXV 100
#define INF 0x7fffffff
#define ll long long
using namespace std;
typedef int ElemType;
typedef int Status;
//邻接矩阵的结构体定义
typedef struct{
    ElemType **a;     //邻接矩阵
    int n;            //图的当前顶点数
    int e;            //图的当前边数
    ElemType noEdge;  //两顶点间无边时的值
}mGraph;


//邻接矩阵的初始化
Status Init(mGraph *mg,int nSize,ElemType noEdgeValue){
    int i,j;
    mg->n=nSize;                 //初始化顶点数
    mg->e = 0;                   //初始化时没有边
    mg->noEdge = noEdgeValue;    //初始化没有边时的取值
    mg->a = (ElemType**)malloc(nSize*sizeof(ElemType *));  //生成长度为n的一维指针数组  ★★★★★
    if(!mg->a) return ERROR;
    for(i = 0;i < mg->n;i++){   //动态生成二维数组
        mg->a[i] = (ElemType*)malloc(nSize*sizeof(ElemType));
        for(j = 0;j < mg->n;j++){
            mg->a[i][j] = mg->noEdge;  //初始化时权重都设为INF
        }
        mg->a[i][i] = 0;        //自回路设置为0
    }
    cout<<"初始化成功!"<<endl;
    return OK;
}



//邻接矩阵的撤销(改成了int型,有返回值),先释放一维数组,再释放指针数组
int Destory(mGraph *mg){
    int i;
    for(i = 0;i < mg->n;i ++){
        free(mg->a[i]);  //释放n个一维数组的存储空间
    }
    free(mg->a);         //释放一维指针数组的存储空间
    cout<<"邻接矩阵已撤销!"<<endl;
    return 1;
}


//邻接矩阵的边的搜索
Status Exist(mGraph *mg,int u,int v){
    if(u < 0||v < 0||u > mg->n-1||v > mg->n-1 ||u == v||mg->a[u][v] == mg->noEdge) {cout<<"你所查找的边不存在!"<<endl;return ERROR;}
    cout<<"查找成功!"<<endl;
    return OK;
}

//邻接矩阵的边的插入
Status Insert(mGraph *mg,int u,int v,ElemType w){
    if(u < 0||v < 0||u > mg->n-1||v > mg->n-1 ||u == v) return ERROR;//u==v时不构成边
    if(mg->a[u][v] != mg->noEdge) return Duplicate;  //若待插入边已存在,则返回出错信息
    mg->a[u][v] = w;                                 //插入新边
    mg->e ++;                                        //增加一条边
    return OK;
}

//邻接矩阵的边的删除
Status Remove(mGraph *mg,int u,int v){
    if(u < 0||v < 0||u > mg->n-1||v > mg->n-1 ||u == v) {cout<<"你的输入有误!"<<endl;return ERROR;}
    if(mg->a[u][v] == mg->noEdge) {cout<<"你所要删除的边不存在!"<<endl;return ERROR;}  //若待删除边不存在,则返回出错信息
    mg->a[u][v] = mg->noEdge;                         //删除边
    mg->e --;
    cout<<"删除成功!"<<endl;
    return OK;
}




//递归输出最短路径
void outputpath(int path[],int st,int en)
{
    if(en==st) {cout<<en<<" ";return;}
    else {outputpath(path,st,path[en]);cout<<en<<" ";}
}
//狄克斯特拉算法
void Dijkstra(mGraph g,int v,int en)
{
    int dist[MAXV],path[MAXV];
    int s[MAXV];//用来构建图的集合,该集合中的任何点都已构建好最短路径的图,表示顶点i是否在其中
    int mindis,i,j,u;
    for(i=0;i<g.n;i++)
    {
        dist[i]=g.a[v][i];//图中各点到v的距离初始化
        //cout<<i<<": "<<dist[i]<<endl;;
        s[i]=0;           //s[]置空
        if(g.a[v][i]<INF) //路径初始化
            path[i]=v;    //顶点v到i有边
        else
            path[i]=-1;   //顶点v到i没边
    }
    s[v]=1;               //将起点v添加到s集合中
    for(i=0;i<g.n;i++)    //循环n-1次对剩下的顶点操作
    {
        mindis=INF;
        for(j=0;j<g.n;j++)//这一遍循环后得到目前到原点最短距离的点的下标u,同时更新最短距离mindis
        {
            if(s[j]==0&&dist[j]<mindis)
            {
                u=j;
                mindis=dist[j];
            }
        }
        s[u]=1;
        for(j=0;j<g.n;j++)//该循环用来修正不在s中的点到原点的最短距离
            if(s[j]==0)   //代表该点不在集合s中
            if(g.a[u][j]<INF&&(dist[u]+g.a[u][j]<dist[j])) //u、j之间有路且从原点到u再到j的距离更短
            {
                dist[j]=dist[u]+g.a[u][j];              //修正最短路径
                path[j]=u;                              //记录路径,j的前一个顶点u
            }
    }
    cout<<"最少转乘次数的路径为:"<<endl;
    outputpath(path,v,en);
}



//floyd算法
void floyd(mGraph g) //O(n立方)
{
    ll A[MAXV][MAXV];   //求每对顶点之间的最短路径
    int path[MAXV][MAXV];//建立A数组
    int i,j,k;           //建立path数组
    for(i=0;i<g.n;i++)   //A和path数组的初始化
    {   for(j=0;j<g.n;j++)
        {
            A[i][j]=g.a[i][j];
            if(i!=j&&g.a[i][j]<INF)
                path[i][j]=i;//i和j顶点之间有一条边时
            else
                path[i][j]=-1;//i和j顶点之间没有边
        }
    }
    for(k=0;k<g.n;k++)        //求Ak[i][j],即考虑了0-k个顶点后,i到j的最短距离。这个循环在依次考虑0-k个点
        for(i=0;i<g.n;i++)
            for(j=0;j<g.n;j++)
               if(i!=j&&A[i][j]>A[i][k]+A[k][j])//找到更短路径即经过k的路径
               {
                   A[i][j]=A[i][k]+A[k][j];//修改路径长度
                   path[i][j]=path[k][j];  //修改最短路经过k,即j的前一个顶点
               }
    cout<<"请输入起始城市的编号v,以及终点城市编号u:"<<endl;
    int v,u;
    cin>>v>>u;
    cout<<"最少转乘次数的路径为:"<<endl;
    outputpath(path[v],v,u);

}



int main()
{
    mGraph g;
    int i,j,u,v;
    int n,m;
    cout<<"请输入城市的数量:"<<endl;
    cin>>n;
    Init(&g,n,INF);

    cout<<"请输入航线的数量:"<<endl;
    cin>>m;
    cout<<"请输入"<<m<<"条航线各自的起点和终点:"<<endl;
    for(i=0;i<m;i++)
    {
        cin>>u>>v;
        Insert(&g,u,v,1);
    }


    cout<<endl<<"下面采用dijkstra算法:"<<endl;
    cout<<"请输入起始城市的编号v,以及终点城市编号u:"<<endl;
    cin>>v>>u;
    Dijkstra(g,v,u);


    cout<<endl<<"下面采用floyd算法:"<<endl;
    floyd(g);
    system("pause");
    return 0;
}

下面是飞机转乘问题样例的调试(因为初始化时各条边的权值均初始化为1,故最终结果与上图样例有些出入,可在insert函数调用时增加输入权值)
在这里插入图片描述
代码暂时应该没有什么大的问题,第一次blog完美收官(哈哈哈哈哈哈哈哈哈哈哈哈)在这里插入图片描述

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值