贪心-acwing-122-糖果传递

贪心-acwing-122-糖果传递

题目:
有n个小朋友坐成一圈,每人有a[i]个糖果。

每人只能给左右两人传递糖果。

每人每次传递一个糖果代价为1。

求使所有人获得均等糖果的最小代价。

输入格式
第一行输入一个正整数n,表示小朋友的个数。

接下来n行,每行一个整数a[i],表示第i个小朋友初始得到的糖果的颗数。

输出格式
输出一个整数,表示最小代价。

数据范围
1≤n≤1000000
数据保证一定有解。

输入样例:
4
1
2
5
4
输出样例:
4

题解:
在这里插入图片描述
如 上 图 , 我 们 设 相 邻 的 小 朋 友 给 第 i 个 小 朋 友 x i 个 糖 果 ( x i > 0 表 示 给 出 , x i < 0 表 示 得 到 ) 。 如上图,我们设相邻的小朋友给第i个小朋友x_i个糖果(x_i>0表示给出,x_i<0表示得到)。 ixi(xi>0xi<0)

即 : a 1 + x 1 − x n = a ˉ , ① a 2 + x 2 − x 1 = a ˉ , ② . . . . . . a n − 1 + x n − 1 − x n − 2 = a ˉ , ③ a n + x n − x n − 1 = a ˉ 。 ④ 即:\\a_1+x_1-x_n=\bar{a},①\\a_2 +x_2-x1=\bar{a},②\\......\\a_{n-1}+x_{n-1}-x_{n-2}=\bar{a},③\\a_n+x_n-x_{n-1}=\bar{a}。④ a1+x1xn=aˉ,a2+x2x1=aˉ,......an1+xn1xn2=aˉ,an+xnxn1=aˉ

其 中 a ˉ = ∑ i = 1 n a i n 。 其中\bar{a}=\frac{\sum_{i=1}^{n}a_i}{n}。 aˉ=ni=1nai

求 ∑ i = 1 n ∣ x i ∣ 的 最 小 值 。 求\sum_{i=1}^{n}|x_i|的最小值。 i=1nxi

因 为 a i 是 常 数 , 我 们 试 着 用 a i 来 表 示 x i 。 因为a_i是常数,我们试着用a_i来表示x_i。 aiaixi

上 述 ① 式 得 : x 1 = x n + a ˉ − a 1 , ⑤ 将 ⑤ 代 入 ② 得 : x 2 = x n + 2 a ˉ − a 1 − a 2 , ⑥ 上述①式得:x_1=x_n+\bar{a}-a_1,⑤\\将⑤代入②得:x_{2}=x_n+2\bar{a}-a_1-a_2,⑥ x1=xn+aˉa1,x2=xn+2aˉa1a2,
依 次 类 推 x i = x n + i a ˉ − a 1 − a 2 − . . . − a i , ( i > = 1 ) 。 依次类推x_i=x_n+i\bar{a}-a_1-a_2-...-a_i,(i>=1)。 xi=xn+iaˉa1a2...ai,(i>=1)

由 于 a i 是 常 数 , 故 设 x i = x n − C i , 其 中 C i = i a ˉ − ∑ k = 1 i a k 。 则 C i = C i − 1 + a ˉ − a i , C 0 = 0 , ( i > = 1 ) 。 由于a_i是常数,故设x_i=x_n-C_i,其中C_i=i\bar{a}-\sum_{k=1}^{i}a_k。\\则C_i=C_{i-1}+\bar{a}-a_i,C_0=0,(i>=1)。 aixi=xnCiCi=iaˉk=1iakCi=Ci1+aˉaiC0=0,(i>=1)

现 求 ∑ i = 1 n ∣ x i ∣ 即 求 ∑ i = 1 n ∣ x n − C i ∣ 即 选 择 一 个 点 x n 到 数 轴 上 n 个 点 C 1 , C 2 , . . . , C n 距 离 和 。 现求\sum_{i=1}^{n}|x_i|即求\sum_{i=1}^{n}|x_n-C_i|即选择一个点x_n到数轴上n个点C_1,C_2,...,C_n距离和。 i=1nxii=1nxnCixnnC1,C2,...,Cn

这 样 就 转 化 到 选 址 问 题 上 来 了 — — 这样就转化到选址问题上来了—— 货舱选址》。

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
#define inf 0x7fffffff
using namespace std;
const int N=1e6+10;
int a[N],n;
ll C[N];
ll ave,ans;
int main()
{
    cin>>n;
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&a[i]);
        ave+=a[i];
    }

    ave/=n;

    for(int i=1;i<=n;i++)
        C[i]=C[i-1]+ave-a[i];

    sort(C+1,C+n+1);

    for(int i=1;i<=n/2;i++)
        ans+=(C[n-i+1]-C[i]);

    printf("%lld\n",ans);

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值