贪心-acwing-122-糖果传递
题目:
有n个小朋友坐成一圈,每人有a[i]个糖果。
每人只能给左右两人传递糖果。
每人每次传递一个糖果代价为1。
求使所有人获得均等糖果的最小代价。
输入格式
第一行输入一个正整数n,表示小朋友的个数。
接下来n行,每行一个整数a[i],表示第i个小朋友初始得到的糖果的颗数。
输出格式
输出一个整数,表示最小代价。
数据范围
1≤n≤1000000
数据保证一定有解。
输入样例:
4
1
2
5
4
输出样例:
4
题解:
如
上
图
,
我
们
设
相
邻
的
小
朋
友
给
第
i
个
小
朋
友
x
i
个
糖
果
(
x
i
>
0
表
示
给
出
,
x
i
<
0
表
示
得
到
)
。
如上图,我们设相邻的小朋友给第i个小朋友x_i个糖果(x_i>0表示给出,x_i<0表示得到)。
如上图,我们设相邻的小朋友给第i个小朋友xi个糖果(xi>0表示给出,xi<0表示得到)。
即 : a 1 + x 1 − x n = a ˉ , ① a 2 + x 2 − x 1 = a ˉ , ② . . . . . . a n − 1 + x n − 1 − x n − 2 = a ˉ , ③ a n + x n − x n − 1 = a ˉ 。 ④ 即:\\a_1+x_1-x_n=\bar{a},①\\a_2 +x_2-x1=\bar{a},②\\......\\a_{n-1}+x_{n-1}-x_{n-2}=\bar{a},③\\a_n+x_n-x_{n-1}=\bar{a}。④ 即:a1+x1−xn=aˉ,①a2+x2−x1=aˉ,②......an−1+xn−1−xn−2=aˉ,③an+xn−xn−1=aˉ。④
其 中 a ˉ = ∑ i = 1 n a i n 。 其中\bar{a}=\frac{\sum_{i=1}^{n}a_i}{n}。 其中aˉ=n∑i=1nai。
求 ∑ i = 1 n ∣ x i ∣ 的 最 小 值 。 求\sum_{i=1}^{n}|x_i|的最小值。 求∑i=1n∣xi∣的最小值。
因 为 a i 是 常 数 , 我 们 试 着 用 a i 来 表 示 x i 。 因为a_i是常数,我们试着用a_i来表示x_i。 因为ai是常数,我们试着用ai来表示xi。
上
述
①
式
得
:
x
1
=
x
n
+
a
ˉ
−
a
1
,
⑤
将
⑤
代
入
②
得
:
x
2
=
x
n
+
2
a
ˉ
−
a
1
−
a
2
,
⑥
上述①式得:x_1=x_n+\bar{a}-a_1,⑤\\将⑤代入②得:x_{2}=x_n+2\bar{a}-a_1-a_2,⑥
上述①式得:x1=xn+aˉ−a1,⑤将⑤代入②得:x2=xn+2aˉ−a1−a2,⑥
依
次
类
推
x
i
=
x
n
+
i
a
ˉ
−
a
1
−
a
2
−
.
.
.
−
a
i
,
(
i
>
=
1
)
。
依次类推x_i=x_n+i\bar{a}-a_1-a_2-...-a_i,(i>=1)。
依次类推xi=xn+iaˉ−a1−a2−...−ai,(i>=1)。
由 于 a i 是 常 数 , 故 设 x i = x n − C i , 其 中 C i = i a ˉ − ∑ k = 1 i a k 。 则 C i = C i − 1 + a ˉ − a i , C 0 = 0 , ( i > = 1 ) 。 由于a_i是常数,故设x_i=x_n-C_i,其中C_i=i\bar{a}-\sum_{k=1}^{i}a_k。\\则C_i=C_{i-1}+\bar{a}-a_i,C_0=0,(i>=1)。 由于ai是常数,故设xi=xn−Ci,其中Ci=iaˉ−∑k=1iak。则Ci=Ci−1+aˉ−ai,C0=0,(i>=1)。
现 求 ∑ i = 1 n ∣ x i ∣ 即 求 ∑ i = 1 n ∣ x n − C i ∣ 即 选 择 一 个 点 x n 到 数 轴 上 n 个 点 C 1 , C 2 , . . . , C n 距 离 和 。 现求\sum_{i=1}^{n}|x_i|即求\sum_{i=1}^{n}|x_n-C_i|即选择一个点x_n到数轴上n个点C_1,C_2,...,C_n距离和。 现求∑i=1n∣xi∣即求∑i=1n∣xn−Ci∣即选择一个点xn到数轴上n个点C1,C2,...,Cn距离和。
这 样 就 转 化 到 选 址 问 题 上 来 了 — — 这样就转化到选址问题上来了—— 这样就转化到选址问题上来了——《货舱选址》。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
#define inf 0x7fffffff
using namespace std;
const int N=1e6+10;
int a[N],n;
ll C[N];
ll ave,ans;
int main()
{
cin>>n;
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
ave+=a[i];
}
ave/=n;
for(int i=1;i<=n;i++)
C[i]=C[i-1]+ave-a[i];
sort(C+1,C+n+1);
for(int i=1;i<=n/2;i++)
ans+=(C[n-i+1]-C[i]);
printf("%lld\n",ans);
return 0;
}