字符串哈希+二分+dp-Rectangle-HDU4495

字符串哈希+二分+dp-Rectangle-HDU4495

题意:

T 组 测 试 用 例 , 每 组 包 括 一 个 n × m 的 由 小 写 字 母 组 成 的 矩 阵 。   定 义 “ 等 腰 直 角 三 角 形 ” : 直 角 边 平 行 于 矩 阵 的 边 , 且 关 于 直 角 角 平 分 线 对 称 , 即 每 一 层 直 角 边 均 相 同 。   要 计 算 整 个 矩 阵 中 , 最 大 的 等 腰 直 角 三 角 形 的 面 积 ( 字 母 数 量 ) 。 T组测试用例,每组包括一个n×m的由小写字母组成的矩阵。\\ \ \\定义“等腰直角三角形”:直角边平行于矩阵的边,且关于直角角平分线对称,即每一层直角边均相同。\\ \ \\要计算整个矩阵中,最大的等腰直角三角形的面积(字母数量)。 Tn×m 线 ()

样例:

Sample Input:
1 
4 4 
abab 
dacb 
adab 
cabb

Sample Output:`在这里插入代码片`
6

容 易 找 到 一 个 最 大 的 等 腰 直 角 三 角 形 , 直 角 顶 点 在 ( 2 , 1 ) 位 置 。 容易找到一个最大的等腰直角三角形,直角顶点在(2,1)位置。 (2,1)

数据范围:

T ∈ [ 1 , 20 ] , n , m ∈ [ 1 , 500 ] 。 T i m e   L i m i t : 100000 m s , M e m o r y   L i m i t : 102400 K 。 T∈[1,20],n,m∈[1,500]。\\Time\ Limit:100000ms,Memory\ Limit:102400K。 T[1,20]n,m[1,500]Time Limit:100000ms,Memory Limit:102400K

题解:

① 、 根 据 直 角 的 位 置 来 枚 举 最 长 的 直 角 边 , 有 四 种 可 能 。 可 以 只 处 理 一 种 直 角 情 况 , 剩 下 的 三 种 可 以 通 过 把 矩 阵 旋 转 90 度 来 解 决 。   ② 、 这 里 只 处 理 直 角 顶 点 在 “ 右 下 方 ” 的 情 况 , 设 顶 点 坐 标 为 ( i , j ) , m l e n [ i ] [ j ] 为 该 顶 点 处 的 最 大 相 等 直 角 边 的 长 度 , d p [ i ] [ j ] 为 以 该 点 为 顶 点 , 所 能 构 成 的 最 大 等 腰 直 角 三 角 形 的 直 角 边 的 长 度 , 有 状 态 转 移 方 程 d p [ i + 1 ] [ j + 1 ] = m i n ( d p [ i ] [ j ] + 2 , m l e n [ i + 1 ] [ j + 1 ] ) , 如 下 图 : ①、根据直角的位置来枚举最长的直角边,有四种可能。\\\qquad可以只处理一种直角情况,剩下的三种可以通过把矩阵旋转90度来解决。\\ \ \\②、这里只处理直角顶点在“右下方”的情况,设顶点坐标为(i,j),mlen[i][j]为该顶点处的最大相等直角边的长度,\\\qquad dp[i][j]为以该点为顶点,所能构成的最大等腰直角三角形的直角边的长度,\\\qquad有状态转移方程dp[i+1][j+1]=min(dp[i][j]+2,mlen[i+1][j+1]),如下图: 90 (i,j)mlen[i][j]dp[i][j]dp[i+1][j+1]=min(dp[i][j]+2,mlen[i+1][j+1])在这里插入图片描述
③ 、 那 么 每 一 趟 用 a n s 保 存 所 有 d p [ i ] [ j ] 中 最 大 值 即 所 能 构 成 的 最 大 等 腰 直 角 三 角 形 的 边 长 , 再 将 矩 形 翻 转 90 ° 做 同 样 的 操 作 , 共 执 行 4 次 。 ③、那么每一趟用ans保存所有dp[i][j]中最大值即所能构成的最大等腰直角三角形的边长,\\\qquad再将矩形翻转90°做同样的操作,共执行4次。 ansdp[i][j]90°4

④ 、 最 终 面 积 通 过 数 列 求 和 公 式 : ( a n s + 1 ) ( a n s ) 2 得 到 。 ④、最终面积通过数列求和公式:\frac{(ans+1)(ans)}{2}得到 。 :2(ans+1)(ans)

具体落实:

① 、 对 每 个 输 入 样 例 分 行 和 列 求 哈 希 值 保 存 到 h r 和 h c 中 。   ② 、 对 每 个 点 ( i , j ) 求 最 大 相 同 直 角 边 长 , 得 到 数 组 m l e n 。 这 一 部 分 用 哈 希 来 判 断 相 等 , 用 二 分 处 理 最 大 长 度 。   ③ 、 d p 求 每 个 点 作 为 直 角 顶 点 所 能 构 成 的 最 大 等 腰 直 角 三 角 形 的 边 长 , 用 a n s 保 存 所 有 结 果 中 的 最 大 值 。   ④ 、 矩 阵 旋 转 90 ° , 共 执 行 4 次 , 最 后 利 用 公 式 求 最 大 面 积 。 ①、对每个输入样例分行和列求哈希值保存到hr和hc中。\\\ \\②、对每个点(i,j)求最大相同直角边长,得到数组mlen。这一部分用哈希来判断相等,用二分处理最大长度。\\\ \\③、dp求每个点作为直角顶点所能构成的最大等腰直角三角形的边长,用ans保存所有结果中的最大值。\\ \ \\④、矩阵旋转90°,共执行4次,最后利用公式求最大面积。 hrhc (i,j)mlen dpans 90°4

注意:

① 、 处 理 每 一 列 的 哈 希 值 时 , 是 当 作 把 矩 阵 逆 时 针 旋 转 90 ° 来 看 待 的 。 哈 希 的 区 间 如 下 图 : ①、处理每一列的哈希值时,是当作把矩阵逆时针旋转90°来看待的。哈希的区间如下图: 90°
在这里插入图片描述
② 、 旋 转 矩 阵 后 , 行 与 列 的 值 发 生 交 换 。 ②、旋转矩阵后,行与列的值发生交换。


代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<map>
#define ll long long
using namespace std;
const int N=510;
const int base=131;
const int mod=1e9+7;
char s[N][N];
int n,m,T;
int mlen[N][N],dp[N][N],ans;  ///mlen[i][j] :(i,j)所在位置最长对称直角边的长度
ll hr[N][N],hc[N][N],p[N];

ll get(ll h[],int l,int r)
{
    return (h[r]-h[l-1]*p[r-l+1]%mod+mod)%mod;
}

void get_hash()
{
    for(int i=1;i<=n;i++)
            for(int j=1;j<=m;j++)
                hr[i][j]=(hr[i][j-1]*base%mod+s[i][j])%mod;

    for(int i=1;i<=m;i++)
            for(int j=1;j<=n;j++)
                hc[i][j]=(hc[i][j-1]*base%mod+s[j][i])%mod;
}

bool check(int i,int j,int len)
{
    return (get(hr[i],j-len+1,j)==get(hc[j],i-len+1,i)) ? true : false ;
}

void cal()   ///二分预处理mlen数组
{
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
        {
            int l=1,r=min(i,j);
            while(l<r)
            {
                int mid=(l+r+1)>>1;
                if(!check(i,j,mid)) r=mid-1;
                else l=mid;
            }
            mlen[i][j]=l;
        }
}

void solve()
{
    get_hash();
    cal();
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
        {
            dp[i][j]=min(dp[i-1][j-1]+2,mlen[i][j]);
            ans=max(ans,dp[i][j]);
        }
}

void Rotate()
{
    int tmp[N][N];
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            tmp[j][n-i+1]=s[i][j];

    swap(n,m);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            s[i][j]=tmp[i][j];
}

int main()
{
    p[0]=1;
    for(int i=1;i<N;i++) p[i]=p[i-1]*base%mod;

    scanf("%d",&T);
    while(T--)
    {
        ans=0;
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++) scanf("%s",s[i]+1);

        for(int i=0;i<4;i++)
        {
            solve();
            Rotate();
        }

        printf("%d\n",(ans+1)*ans/2);
    }

    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值