组合数学 - 求组合数(递推 + 定义 + Lucas定理 + 高精度)

组合数学 - 求组合数(递推 + 定义 + Lucas定理)

1、递推法 - O ( n 2 ) O(n^2) O(n2)

给 定 n 组 询 问 , 每 组 询 问 给 定 两 个 整 数 a , b , 请 你 输 出 C a b m o d ( 1 0 9 + 7 ) 的 值 。 给定n组询问,每组询问给定两个整数a,b,请你输出C^b_amod (10^9+7)的值。 nabCabmod(109+7)

输入格式
第一行包含整数n。

接下来n行,每行包含一组a和b。

输出格式
共n行,每行输出一个询问的解。

数据范围
1≤n≤10000,
1≤b≤a≤2000

输入样例:
3
3 1
5 3
2 2
输出样例:
3
10
1

分析:

a , b < = 2000 , 可 以 用 递 推 直 接 求 出 来 , 利 用 公 式 : a,b<=2000,可以用递推直接求出来,利用公式: a,b<=2000

C n m = C n − 1 m + C n − 1 m − 1 C_n^m=C_{n-1}^m+C_{n-1}^{m-1} Cnm=Cn1m+Cn1m1

代码:

#include<iostream>
#include<cstdio>

using namespace std;

const int N = 2010 , mod = 1e9+7;

int n,C[N][N];

void cal()
{
    for(int i=0;i<N;i++)
        for(int j=0;j<=i;j++)
            if(j==0) C[i][j]=1;
            else C[i][j]=(C[i-1][j]+C[i-1][j-1])%mod;
}

int main()
{
    cal();
    cin>>n;
    
    while(n--)
    {
        int a,b;
        scanf("%d%d",&a,&b);
        printf("%d\n",C[a][b]);
    }
    
    return 0;
}

2、定义法 - O ( n l o g n ) O(nlogn) O(nlogn)

给 定 n 组 询 问 , 每 组 询 问 给 定 两 个 整 数 a , b , 请 你 输 出 C a b m o d ( 1 0 9 + 7 ) 的 值 。 给定n组询问,每组询问给定两个整数a,b,请你输出C^b_amod (10^9+7)的值。 nabCabmod(109+7)

输入格式
第一行包含整数n。

接下来n行,每行包含一组a和b。

输出格式
共n行,每行输出一个询问的解。

数据范围
1≤n≤10000,
1≤b≤a≤105

输入样例:
3
3 1
5 3
2 2
输出样例:
3
10
1

分析:

a , b < = 100000 , 直 接 利 用 定 义 : a,b<=100000,直接利用定义: a,b<=100000
C n m = n ! m ! ( n − m ) ! C_n^m=\frac{n!}{m!(n-m)!} Cnm=m!(nm)!n!

先 预 处 理 1 先预处理1 1~ 100000 的 所 有 阶 乘 的 结 果 , 直 接 带 入 定 义 式 。 100000的所有阶乘的结果,直接带入定义式。 100000

除 数 取 模 问 题 , 由 于 1 0 9 + 7 是 质 数 , 可 以 使 用 快 速 幂 + 费 马 小 定 理 求 逆 元 。 除数取模问题,由于10^9+7是质数,可以使用快速幂+费马小定理求逆元。 109+7使+

共 预 处 理 两 个 数 组 ① 、 f a c t [ i ] = i ! = f a c t [ i − 1 ] × i   %   m o d , ② 、 i n f a c t [ i ] = f a c t [ i ] − 1 = i n f a c t [ i − 1 ] × i − 1   %   m o d = i n f a c t [ i − 1 ] × i m o d − 2   %   m o d 。 共预处理两个数组\\①、fact[i]=i!=fact[i-1]×i\ \%\ mod,\\②、infact[i]=fact[i]^{-1}=infact[i-1]×i^{-1}\ \%\ mod=infact[i-1]×i^{mod-2}\ \%\ mod。 fact[i]=i!=fact[i1]×i % modinfact[i]=fact[i]1=infact[i1]×i1 % mod=infact[i1]×imod2 % mod

代码:

#include<iostream>
#include<cstdio>

#define ll long long

using namespace std;

const int N = 100010, mod = 1e9+7;

ll fact[N],infact[N];
int n;

ll quick_pow(ll a,ll b)
{
    ll ans=1;
    while(b)
    {
        if(b&1) ans=ans*a%mod;
        a=a*a%mod;
        b>>=1;
    }
    return ans;
}

int main()
{
    fact[0]=infact[0]=1;
    for(int i=1;i<N;i++)
    {
        fact[i]=fact[i-1]*i%mod;
        infact[i]=infact[i-1]*quick_pow(i,mod-2)%mod;
    }

    cin>>n;
    while(n--)
    {
        int a,b;
        scanf("%d%d",&a,&b);
        printf("%d\n",fact[a]*infact[b]%mod*infact[a-b]%mod);
    }
    
    return 0;
}

3、Lucas定理 - O ( l o g p N ⋅ ( p + l o g 2 p ) ) O(log_pN·(p+log_2p)) O(logpN(p+log2p))

给 定 n 组 询 问 , 每 组 询 问 给 定 三 个 整 数 a , b , p , 其 中 p 是 质 数 , 请 你 输 出 C a b   m o d   p 的 值 。 给定n组询问,每组询问给定三个整数a,b,p,其中p是质数,请你输出C^b_a \ mod\ p的值。 na,b,ppCab mod p

输入格式
第一行包含整数n。

接下来n行,每行包含一组a,b,p。

输出格式
共n行,每行输出一个询问的解。

数据范围
1≤n≤20,
1≤b≤a≤1018,
1≤p≤105,

输入样例:
3
5 3 7
3 1 5
6 4 13
输出样例:
3
3
2

分析:

a , b < = 1 0 18 , p < = 1 0 5 , 采 用 卢 卡 斯 定 理 : a,b<=10^{18},p<=10^5,采用卢卡斯定理: a,b<=1018p<=105

设 a = a k p k + a k − 1 p k − 1 + . . . + a 0 p 0 , b = b k p k + b k − 1 p k − 1 + . . . + b 0 p 0 , 则 有 : 设a=a_kp^k+a_{k-1}p^{k-1}+...+a_0p^0, b=b_kp^k+b_{k-1}p^{k-1}+...+b_0p^0,\\则有: a=akpk+ak1pk1+...+a0p0b=bkpk+bk1pk1+...+b0p0,

C a b ≡ C a k b k ⋅ C a k − 1 b k − 1 ⋅ . . . ⋅ C a 0 b 0 ⋅ ( m o d   p ) C_a^b≡C_{a_k}^{b_k}·C_{a_{k-1}}^{b_{k-1}}·...·C_{a_{0}}^{b_{0}}·(mod\ p) CabCakbkCak1bk1...Ca0b0(mod p)

证 明 : 由 p 为 素 数 , 可 知 对 1 < = j < = p − 1 , 都 有 C p j = p j C p − 1 j − 1 ≡ 0 ( m o d   p ) , 证明:\\由p为素数,可知对1<=j<=p-1,都有C_p^j=\frac{p}{j}C_{p-1}^{j-1}≡0(mod\ p), p1<=j<=p1Cpj=jpCp1j10(mod p)

于 是 , 于是,
( 1 + x ) p = 1 + C p 1 x + . . . + C p p − 1 x p − 1 + x p ≡ 1 + x p ( m o d   p ) . (1+x)^p=1+C_p^1x+...+C_{p}^{p-1}x^{p-1}+x^p≡1+x^p(mod\ p). (1+x)p=1+Cp1x+...+Cpp1xp1+xp1+xp(mod p).

利 用 上 述 结 果 , 可 知 利用上述结果,可知
( 1 + x ) p = ( 1 + x ) a 0 ( ( 1 + x ) p ) a 1 . . . ( ( 1 + x ) p k ) a k ≡ ( 1 + x ) a 0 ( 1 + x p ) a 1 . . . ( 1 + x p k ) a k ( m o d   p ) . (1+x)^p=(1+x)^{a_0}((1+x)^p)^{a_1}...((1+x)^{p^k})^{a_k}≡(1+x)^{a_0}(1+x^p)^{a_1}...(1+x^{p^k})^{a_k}(mod\ p ). (1+x)p=(1+x)a0((1+x)p)a1...((1+x)pk)ak(1+x)a0(1+xp)a1...(1+xpk)ak(mod p).

对 比 两 边 x b 项 的 系 数 , 可 得 对比两边x^b项的系数,可得 xb
C a b ≡ C a k b k ⋅ C a k − 1 b k − 1 ⋅ . . . ⋅ C a 0 b 0 ⋅ ( m o d   p ) C_a^b≡C_{a_k}^{b_k}·C_{a_{k-1}}^{b_{k-1}}·...·C_{a_{0}}^{b_{0}}·(mod\ p) CabCakbkCak1bk1...Ca0b0(mod p)

具体实现可以通过递归:

由 于 a = a k p k + a k − 1 p k − 1 + . . . + a 0 p 0 , b = b k p k + b k − 1 p k − 1 + . . . + b 0 p 0 , 由于a=a_kp^k+a_{k-1}p^{k-1}+...+a_0p^0, b=b_kp^k+b_{k-1}p^{k-1}+...+b_0p^0, a=akpk+ak1pk1+...+a0p0b=bkpk+bk1pk1+...+b0p0,

只 有 最 后 项 的 系 数 a 0 和 b 0 不 含 p 的 正 整 数 次 幂 , 故 C a b 对 p 取 模 后 只 剩 下 C a 0 b 0 , 此 时 我 们 将 a 和 b 都 除 去 一 个 p , 得 到 : 只有最后项的系数a_0和b_0不含p的正整数次幂,故C_a^b对p取模后只剩下C_{a_0}^{b_0},此时我们将a和b都除去一个p,得到: a0b0pCabpCa0b0abp

a = a k p k + a k − 1 p k − 1 + . . . + a 1 p 0 , b = b k p k + b k − 1 p k − 1 + . . . + b 1 p 0 , a=a_kp^k+a_{k-1}p^{k-1}+...+a_1p^0, b=b_kp^k+b_{k-1}p^{k-1}+...+b_1p^0, a=akpk+ak1pk1+...+a1p0b=bkpk+bk1pk1+...+b1p0,

此 时 C a b 对 p 取 模 能 够 得 到 C a 1 b 1 , 这 样 递 归 k + 1 次 就 能 够 求 得 C a k b k ⋅ C a k − 1 b k − 1 ⋅ . . . ⋅ C a 0 b 0 ⋅ ( m o d   p ) . 此时C_a^b对p取模能够得到C_{a_1}^{b_1},这样递归k+1次就能够求得C_{a_k}^{b_k}·C_{a_{k-1}}^{b_{k-1}}·...·C_{a_{0}}^{b_{0}}·(mod\ p). CabpCa1b1k+1CakbkCak1bk1...Ca0b0(mod p).

关 系 式 : C a b ≡ C a   %   p b   %   p ⋅ C a / p b / p ( m o d   p ) 关系式:C_a^b≡C_{a\ \%\ p}^{b\ \%\ p}·C_{a/p}^{b/p}(mod \ p) CabCa % pb % pCa/pb/p(mod p)

代码:

#include<iostream>

#define ll long long 

using namespace std;

const int N=100010;

int quick_pow(ll a,ll b,int p)
{
    int ans=1;
    while(b)
    {
        if(b&1) ans=ans*a%p;
        a=a*a%p;
        b>>=1;
    }
    return ans;
}

ll C(int a,int b,int p)
{
    if(b>a) return 0;
    
    ll up=1, down=1;
    for(int i=1,j=a;i<=b;i++,j--)
    {
        up = up*j%p;
        down = down*i%p;
    }
    return up*quick_pow(down,p-2,p)%p;
}

int lucas(ll a,ll b,int p)
{
    if(a<p&&b<p) return C(a,b,p);
    return C(a%p,b%p,p)*lucas(a/p,b/p,p)%p;
}

int main()
{
    int n;
    cin>>n;
    
    while(n--)
    {
        ll a,b;
        int p;
        cin>>a>>b>>p;
        cout<<lucas(a,b,p)<<endl;
    }
    
    return 0;
}

4、定义 + 高精度 - O ( n ) O(n) O(n)

输 入 a , b , 求 C a b 的 值 。 输入a,b,求C^b_a的值。 a,bCab

注意结果可能很大,需要使用高精度计算。

输入格式
共一行,包含两个整数a和b。

输出格式
共一行,输出 C a b C^b_a Cab的值。

数据范围
1≤b≤a≤5000

输入样例:
5 3
输出样例:
10

分析:

根 据 定 义 : 根据定义:
C n m = n ! m ! ( n − m ) ! C_n^m=\frac{n!}{m!(n-m)!} Cnm=m!(nm)!n!

若 直 接 计 算 , 需 要 同 时 实 现 高 精 度 乘 法 、 除 法 , 效 率 较 低 , 我 们 可 以 将 C n m 先 分 解 质 因 数 , 即 C n m = P 1 a 1 P 2 a 2 . . . P k a k , 这 样 就 可 以 转 化 为 乘 法 取 模 , 且 仅 需 用 高 精 度 乘 法 即 可 实 现 。 若直接计算,需要同时实现高精度乘法、除法,效率较低,我们可以将C_n^m先分解质因数,\\即C_n^m=P_1^{a_1}P_2^{a_2}...P_k^{a_k},这样就可以转化为乘法取模,且仅需用高精度乘法即可实现。 CnmCnm=P1a1P2a2...Pkak

对 阶 乘 a ! 分 解 质 因 数 p i : 阶 乘 a ! 中 p i 的 幂 次 s u m i = ⌊ a p i ⌋ + ⌊ a p i 2 ⌋ + ⌊ a p i 3 ⌋ + . . . 对阶乘a!分解质因数p_i:\\阶乘a!中p_i的幂次sum_i=\lfloor\frac{a}{p_i}\rfloor+\lfloor\frac{a}{p_i^2}\rfloor+\lfloor\frac{a}{p_i^3}\rfloor+... a!pia!pisumi=pia+pi2a+pi3a+...

则 组 合 数 C n m = n ! m ! ( n − m ) ! 的 质 因 数 的 幂 为 分 子 的 质 因 数 的 幂 减 去 分 母 的 对 应 的 质 因 数 的 幂 。 则组合数C_n^m=\frac{n!}{m!(n-m)!}的质因数的幂为分子的质因数的幂减去分母的对应的质因数的幂。 Cnm=m!(nm)!n!

说明:

a ! 表 示 1 a!表示1 a!1~ a 中 所 有 数 的 乘 积 , 区 间 [ 1 , a ] 中 , 包 含 p i 1 的 数 共 有 ⌊ a p i ⌋ , 同 时 这 当 中 可 能 有 些 数 包 含 的 是 p i 2 , 这 些 数 对 幂 次 的 贡 献 是 2 , 但 是 我 们 只 算 了 1 次 , 故 我 们 再 加 上 ⌊ a p i 2 ⌋ , 以 此 类 推 再 加 上 ⌊ a p i 3 ⌋ , ⌊ a p i 4 ⌋ . . . a中所有数的乘积,\\区间[1,a]中,包含p_i^1的数共有\lfloor\frac{a}{p_i}\rfloor,\\同时这当中可能有些数包含的是p_i^2,这些数对幂次的贡献是2,但是我们只算了1次,故我们再加上\lfloor\frac{a}{p_i^2}\rfloor,\\以此类推再加上\lfloor\frac{a}{p_i^3}\rfloor,\lfloor\frac{a}{p_i^4}\rfloor... a[1,a]pi1piapi221pi2api3a,pi4a...

具体落实:

① 、 筛 出 5000 以 内 的 所 有 质 数 。 ①、筛出5000以内的所有质数。 5000

② 、 预 处 理 计 算 a 和 b 的 每 个 质 因 子 的 次 数 。 ②、预处理计算a和b的每个质因子的次数。 ab

③ 、 高 精 度 计 算 C n m = P 1 a 1 P 2 a 2 . . . P k a k 。 ③、高精度计算C_n^m=P_1^{a_1}P_2^{a_2}...P_k^{a_k}。 Cnm=P1a1P2a2...Pkak

代码:

#include<iostream>
#include<vector>

using namespace std;

const int N=5010;

int prime[N],cnt;
int sum[N];
bool st[N];

void get_prime(int n)
{
    for(int i=2;i<=n;i++)
    {
        if(!st[i]) prime[cnt++]=i;
        for(int j=0;prime[j]<=n/i;j++)
        {
            st[i*prime[j]]=true;
            if(i%prime[j]==0) break;
        }
    }
}

int cal(int x,int p)
{
    int res=0;
    while(x)
    {
        res+=x/p;
        x/=p;
    }
    return res;
}

vector<int> mul(vector<int> a,int b)
{
    vector<int> c;
    int t=0;
    for(int i=0;i<a.size();i++)
    {
        t+=a[i]*b;
        c.push_back(t%10);
        t/=10;
    }
    while(t)
    {
        c.push_back(t%10);
        t/=10;
    }
    return c;
}

int main()
{
    int a,b;
    cin>>a>>b;
    
    get_prime(a);
    
    for(int i=0;i<cnt;i++)
    {
        int p=prime[i];
        sum[i]=cal(a,p)-cal(a-b,p)-cal(b,p);
    }
    
    vector<int> res;
    res.push_back(1);
    
    for(int i=0;i<cnt;i++)
        for(int j=0;j<sum[i];j++)
            res=mul(res,prime[i]);
            
    for(int i=res.size()-1;i>=0;i--) cout<<res[i];
    puts("");
    
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值