线段树 - Interval GCD(区间最大公约数) - AcWing 246

线段树 - Interval GCD(区间最大公约数) - AcWing 246

给定一个长度为N的数列A,以及M条指令,每条指令可能是以下两种之一:

1、“C l r d”,表示把 A[l],A[l+1],…,A[r] 都加上 d。

2、“Q l r”,表示询问 A[l],A[l+1],…,A[r] 的最大公约数(GCD)。

对于每个询问,输出一个整数表示答案。

输入格式
第一行两个整数N,M。

第二行N个整数A[i]。

接下来M行表示M条指令,每条指令的格式如题目描述所示。

输出格式
对于每个询问,输出一个整数表示答案。

每个答案占一行。

数据范围

N ≤ 500000 , M ≤ 100000 N≤500000,M≤100000 N500000,M100000

输入样例:

5 5
1 3 5 7 9
Q 1 5
C 1 5 1
Q 1 5
C 3 3 6
Q 2 4

输出样例:

1
2
4

分析:

操 作 1 : 区 间 修 改 。 可 采 用 差 分 数 组 , 用 线 段 树 维 护 , 进 行 单 点 修 改 。 操作1:区间修改。可采用差分数组,用线段树维护,进行单点修改。 1线

操 作 2 : 求 g c d ( A [ l ] , A [ l + 1 ] , . . . , A [ r ] ) 。 操作2:求gcd(A[l],A[l+1],...,A[r])。 2gcd(A[l],A[l+1],...,A[r])

由 于 操 作 1 我 们 想 利 用 差 分 数 组 , 故 我 们 可 以 将 操 作 2 转 化 为 求 : g c d ( A [ l ] , A [ l + 1 ] − A [ l ] , . . . , A [ r ] − A [ r − 1 ] ) 。 由于操作1我们想利用差分数组,故我们可以将操作2转化为求:gcd(A[l],A[l+1]-A[l],...,A[r]-A[r-1])。 12gcd(A[l],A[l+1]A[l],...,A[r]A[r1])

即 : 即: : g c d ( A [ l ] , A [ l + 1 ] , . . . , A [ r ] ) = g c d ( A [ l ] , A [ l + 1 ] − A [ l ] , . . . , A [ r ] − A [ r − 1 ] ) gcd(A[l],A[l+1],...,A[r])=gcd(A[l],A[l+1]-A[l],...,A[r]-A[r-1]) gcd(A[l],A[l+1],...,A[r])=gcd(A[l],A[l+1]A[l],...,A[r]A[r1])

证明:

假 设 g c d ( A [ l ] , A [ l + 1 ] , . . . , A [ r ] ) = d , 则   d ∣ A [ i ] , i ∈ [ l , r ] 。 假设gcd(A[l],A[l+1],...,A[r])=d,则\ d|A[i],i∈[l,r]。 gcd(A[l],A[l+1],...,A[r])=d dA[i]i[l,r]

因 为   d ∣ A [ i + 1 ]   且   d ∣ A [ i ] , 所 以   d ∣ ( A [ i + 1 ] − A [ i ] ) , i ∈ [ l , r − 1 ] 。 因为\ d|A[i+1]\ 且\ d|A[i],所以\ d|(A[i+1]-A[i]),i∈[l,r-1]。  dA[i+1]  dA[i] d(A[i+1]A[i])i[l,r1]

从 而 容 易 得 到 g c d ( A [ l ] , A [ l + 1 ] , . . . , A [ r ] ) = d ≤ g c d ( A [ l ] , A [ l + 1 ] − A [ l ] , . . . , A [ r ] − A [ r − 1 ] ) 。 从而容易得到gcd(A[l],A[l+1],...,A[r])=d≤gcd(A[l],A[l+1]-A[l],...,A[r]-A[r-1])。 gcd(A[l],A[l+1],...,A[r])=dgcd(A[l],A[l+1]A[l],...,A[r]A[r1])

假 设 g c d ( A [ l ] , A [ l + 1 ] − A [ l ] , . . . , A [ r ] − A [ r − 1 ] ) = d , 假设gcd(A[l],A[l+1]-A[l],...,A[r]-A[r-1])=d, gcd(A[l],A[l+1]A[l],...,A[r]A[r1])=d

因 为   d ∣ ( A [ l + 1 ] − A [ l ] )   且   d ∣ A [ l ] , 所 以   d   ∣   [   ( A [ l + 1 ] − A [ l ] ) + A [ l ]   ] , 即   d   ∣   A [ l + 1 ] 。 因为\ d|(A[l+1]-A[l])\ 且\ d|A[l],所以\ d\ |\ [\ (A[l+1]-A[l])+A[l]\ ],即\ d\ |\ A[l+1]。  d(A[l+1]A[l])  dA[l] d  [ (A[l+1]A[l])+A[l] ] d  A[l+1]

以 此 类 推 , 容 易 得 到   d ∣ A [ i ] , i ∈ [ l , r ] 。 以此类推,容易得到\ d|A[i],i∈[l,r]。  dA[i]i[l,r]

所 以 g c d ( A [ l ] , A [ l + 1 ] − A [ l ] , . . . , A [ r ] − A [ r − 1 ] ) ≤ g c d ( A [ l ] , A [ l + 1 ] , . . . , A [ r ] ) 所以gcd(A[l],A[l+1]-A[l],...,A[r]-A[r-1])≤gcd(A[l],A[l+1],...,A[r]) gcd(A[l],A[l+1]A[l],...,A[r]A[r1])gcd(A[l],A[l+1],...,A[r])

从 而 g c d ( A [ l ] , A [ l + 1 ] , . . . , A [ r ] ) = g c d ( A [ l ] , A [ l + 1 ] − A [ l ] , . . . , A [ r ] − A [ r − 1 ] ) = d 。 从而gcd(A[l],A[l+1],...,A[r])=gcd(A[l],A[l+1]-A[l],...,A[r]-A[r-1])=d。 gcd(A[l],A[l+1],...,A[r])=gcd(A[l],A[l+1]A[l],...,A[r]A[r1])=d

这 样 , 我 们 就 能 够 利 用 差 分 数 组 进 行 操 作 2 了 。 这样,我们就能够利用差分数组进行操作2了。 2

具体落实:

用 线 段 树 来 维 护 A 的 差 分 数 组 。 用线段树来维护A的差分数组。 线A

对 操 作 1 : 仅 需 进 行 单 点 修 改 。 对操作1:仅需进行单点修改。 1

对 操 作 2 : 仅 对 A [ l ] 需 要 进 行 区 间 求 和 , 再 和 其 他 节 点 值 求 最 大 公 约 数 。 对操作2:仅对A[l]需要进行区间求和,再和其他节点值求最大公约数。 2A[l]

因 此 , 节 点 结 构 体 中 需 要 存 储 区 间 和 和 区 间 最 大 公 约 数 。 因此,节点结构体中需要存储区间和和区间最大公约数。

代码:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>

#define ll long long

using namespace std;

const int N=5e5+10;

struct node
{
    int l,r;
    ll sum,d;
}tr[N*4];

int n,m;
ll A[N];

ll gcd(ll a,ll b)
{
    return b ? gcd(b,a%b) : a;
}

void pushup(node &u,node &l,node &r)
{
    u.sum=l.sum+r.sum;
    u.d=gcd(l.d,r.d);
}

void pushup(int u)
{
    pushup(tr[u],tr[u<<1],tr[u<<1|1]);
}

void build(int u,int l,int r)
{
    if(l==r)
    {
        ll b=A[l]-A[l-1];
        tr[u]={l,r,b,b};
    }
    else
    {
        tr[u]={l,r};
        int mid=l+r>>1;
        build(u<<1,l,mid),build(u<<1|1,mid+1,r);
        pushup(u);
    }
}

void modify(int u,int x,ll v)
{
    if(tr[u].l==x&&tr[u].r==x)  //叶子节点,单点修改
    {
        ll b=tr[u].sum+v;
        tr[u]={x,x,b,b};
    }
    else
    {
        int mid=tr[u].l+tr[u].r>>1;
        if(x<=mid) modify(u<<1,x,v);
        else modify(u<<1|1,x,v);
        pushup(u);
    }
}

node query(int u,int l,int r)
{
    if(l<=tr[u].l&&tr[u].r<=r) return tr[u];
    
    int mid=tr[u].l+tr[u].r>>1;
    if(r<=mid) return query(u<<1,l,r);
    else if(l>mid) return query(u<<1|1,l,r);
    else
    {
        node left=query(u<<1,l,r);
        node right=query(u<<1|1,l,r);
        node res;
        pushup(res,left,right);
        return res;
    }
}

int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++) scanf("%lld",&A[i]);
    build(1,1,n);
    
    char op[2];
    int l,r;
    ll d;
    while(m--)
    {
        scanf("%s%d%d",op,&l,&r);
        if(*op=='Q')
        {
            node Al=query(1,1,l),Ar=query(1,l+1,r);
            printf("%lld\n",abs(gcd(Al.sum,Ar.d)));
        }
        else
        {
            scanf("%lld",&d);
            modify(1,l,d);
            if(r+1<=n) modify(1,r+1,-d);  //避免越界
        }
    }
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值