Kruskal(缩点) + 并查集 - 连接格点 - AcWing 1144
有一个 m 行 n 列的点阵,相邻两点可以相连。
一条纵向的连线花费一个单位,一条横向的连线花费两个单位。
某些点之间已经有连线了,试问至少还需要花费多少个单位才能使所有的点全部连通。
输入格式
第一行输入两个正整数 m 和 n。
以下若干行每行四个正整数 x1,y1,x2,y2,表示第 x1 行第 y1 列的点和第 x2 行第 y2 列的点已经有连线。
输入保证|x1−x2|+|y1−y2|=1。
输出格式
输出使得连通所有点还需要的最小花费。
数据范围
1 ≤ m , n ≤ 1000 , 0 ≤ 已 经 存 在 的 连 线 数 ≤ 10000 1≤m,n≤1000, 0≤已经存在的连线数≤10000 1≤m,n≤1000,0≤已经存在的连线数≤10000
输入样例:
2 2
1 1 2 1
输出样例:
3
分析:
首 先 将 已 经 连 接 好 的 点 加 入 到 对 应 的 连 通 块 中 , 接 着 在 各 个 连 通 块 之 间 跑 最 小 生 成 树 即 可 。 首先将已经连接好的点加入到对应的连通块中,接着在各个连通块之间跑最小生成树即可。 首先将已经连接好的点加入到对应的连通块中,接着在各个连通块之间跑最小生成树即可。
主 要 问 题 有 : 主要问题有: 主要问题有:
① 、 二 维 坐 标 点 转 化 到 一 维 坐 标 上 去 , 方 便 建 图 。 ①、二维坐标点转化到一维坐标上去,方便建图。 ①、二维坐标点转化到一维坐标上去,方便建图。
② 、 各 点 与 相 邻 点 之 间 的 边 如 何 建 立 。 ②、各点与相邻点之间的边如何建立。 ②、各点与相邻点之间的边如何建立。
事 实 上 , 只 要 把 点 都 加 入 连 通 块 中 去 即 可 , 故 每 条 无 向 边 我 们 仅 需 建 立 一 次 。 \qquad事实上,只要把点都加入连通块中去即可,故每条无向边我们仅需建立一次。 事实上,只要把点都加入连通块中去即可,故每条无向边我们仅需建立一次。
为 了 节 约 空 间 , 我 们 对 每 个 点 , 将 该 点 与 其 相 邻 的 右 、 下 两 个 点 建 立 一 条 边 。 \qquad为了节约空间,我们对每个点,将该点与其相邻的右、下两个点建立一条边。 为了节约空间,我们对每个点,将该点与其相邻的右、下两个点建立一条边。
③ 、 本 题 最 多 有 n × m 条 边 , 极 限 在 1 0 6 级 别 。 排 序 的 话 时 间 限 制 仍 然 较 紧 。 ③、本题最多有n×m条边,极限在10^6级别。排序的话时间限制仍然较紧。 ③、本题最多有n×m条边,极限在106级别。排序的话时间限制仍然较紧。
但 是 我 们 发 现 , 边 权 仅 有 1 和 2 两 种 情 况 , 故 我 们 可 以 优 先 建 立 边 权 为 1 的 竖 边 。 \qquad但是我们发现,边权仅有1和2两种情况,故我们可以优先建立边权为1的竖边。 但是我们发现,边权仅有1和2两种情况,故我们可以优先建立边权为1的竖边。
这 仅 需 在 循 环 所 有 点 建 图 的 时 候 循 环 两 次 , 第 一 次 建 立 每 个 点 下 方 的 边 , 第 二 次 建 立 右 方 的 边 。 \qquad这仅需在循环所有点建图的时候循环两次,第一次建立每个点下方的边,第二次建立右方的边。 这仅需在循环所有点建图的时候循环两次,第一次建立每个点下方的边,第二次建立右方的边。
这 就 把 求 最 小 生 成 树 的 时 间 复 杂 度 优 化 到 了 O ( M ) , 其 中 M = n × m , 即 边 的 数 量 。 \qquad这就把求最小生成树的时间复杂度优化到了O(M),其中M=n×m,即边的数量。 这就把求最小生成树的时间复杂度优化到了O(M),其中M=n×m,即边的数量。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1010, M=N*N, K=2*M;
int n,m,res,ecnt;
int p[M];
int ids[N][N];
struct edge
{
int u,v,w;
}E[K];
int Find(int x)
{
if(p[x]!=x) return p[x]=Find(p[x]);
return p[x];
}
void get_edges()
{
int dir[2][2]{{1,0},{0,1}}, w[2]={1,2}; //一条边加一次就行,防数组越界,对每个点加右、下两条边
for(int z=0;z<2;z++)
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
int x=i+dir[z][0],y=j+dir[z][1];
if(x>0&&x<=n&&y>0&&y<=m)
{
int a=ids[i][j],b=ids[x][y];
E[ecnt++]={a,b,w[z]};
}
}
}
void kruskal()
{
int a,b;
for(int i=0;i<ecnt;i++)
{
a=Find(E[i].u),b=Find(E[i].v);
if(a!=b)
{
p[a]=b;
res+=E[i].w;
}
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n*m;i++) p[i]=i;
for(int i=1,idx=0;i<=n;i++)
for(int j=1;j<=m;j++)
ids[i][j]=++idx;
int x0,y0,x2,y2;
while(~scanf("%d%d%d%d",&x0,&y0,&x2,&y2))
{
int a=ids[x0][y0],b=ids[x2][y2];
a=Find(a),b=Find(b);
p[a]=b;
}
get_edges();
kruskal();
cout<<res<<endl;
return 0;
}