差分约束 - SCOI 2011 - 糖果 - 洛谷 P3275
幼儿园里有 N 个小朋友,老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果。
但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的多,于是在分配糖果的时候, 老师需要满足小朋友们的 K 个要求。
幼儿园的糖果总是有限的,老师想知道他至少需要准备多少个糖果,才能使得每个小朋友都能够分到糖果,并且满足小朋友们所有的要求。
输入格式
输入的第一行是两个整数 N,K。
接下来 K 行,表示分配糖果时需要满足的关系,每行 3 个数字 X,A,B。
如果 X=1.表示第 A 个小朋友分到的糖果必须和第 B 个小朋友分到的糖果一样多。
如果 X=2,表示第 A 个小朋友分到的糖果必须少于第 B 个小朋友分到的糖果。
如果 X=3,表示第 A 个小朋友分到的糖果必须不少于第 B 个小朋友分到的糖果。
如果 X=4,表示第 A 个小朋友分到的糖果必须多于第 B 个小朋友分到的糖果。
如果 X=5,表示第 A 个小朋友分到的糖果必须不多于第 B 个小朋友分到的糖果。
小朋友编号从 1 到 N。
输出格式
输出一行,表示老师至少需要准备的糖果数,如果不能满足小朋友们的所有要求,就输出 −1。
数据范围
1 ≤ N < 1 0 5 , 1 ≤ K ≤ 1 0 5 , 1 ≤ X ≤ 5 , 1 ≤ A , B ≤ N 1≤N<10^5, 1≤K≤10^5, 1≤X≤5, 1≤A,B≤N 1≤N<105,1≤K≤105,1≤X≤5,1≤A,B≤N
输入样例:
5 7
1 1 2
2 3 2
4 4 1
3 4 5
5 4 5
2 3 5
4 5 1
输出样例:
11
分析:
本 题 要 求 最 小 值 , 因 此 是 跑 最 长 路 。 本题要求最小值,因此是跑最长路。 本题要求最小值,因此是跑最长路。
跑 完 最 长 路 , 有 不 等 关 系 d i s [ j ] ≥ d i s [ u ] + w [ i ] 。 跑完最长路,有不等关系dis[j]≥dis[u]+w[i]。 跑完最长路,有不等关系dis[j]≥dis[u]+w[i]。
故 将 所 有 不 等 关 系 转 化 为 ′ ≥ ′ 号 。 故将所有不等关系转化为\ '≥'\ 号。 故将所有不等关系转化为 ′≥′ 号。
① 、 X = 1 : A = B 即 , A ≥ B 且 B ≥ A < = > 添 加 B − > A 和 A − > B 两 条 边 , 边 权 均 为 0 。 ①、X=1:A=B即,A≥B且B≥A\quad<=>\quad添加B->A和A->B两条边,边权均为0。 ①、X=1:A=B即,A≥B且B≥A<=>添加B−>A和A−>B两条边,边权均为0。
② 、 X = 2 : A < B 即 , B ≥ A + 1 < = > 添 加 A − > B 一 条 边 , 边 权 为 1 。 ②、X=2:A<B即,B≥A+1\quad<=>\quad添加A->B一条边,边权为1。 ②、X=2:A<B即,B≥A+1<=>添加A−>B一条边,边权为1。
③ 、 X = 3 : A ≥ B 即 , A ≥ B < = > 添 加 B − > A 一 条 边 , 边 权 为 0 。 ③、X=3:A≥B即,A≥B\quad<=>\quad添加B->A一条边,边权为0。 ③、X=3:A≥B即,A≥B<=>添加B−>A一条边,边权为0。
④ 、 X = 4 : A > B 即 , A ≥ B + 1 < = > 添 加 B − > A 一 条 边 , 边 权 为 1 。 ④、X=4:A>B即,A≥B+1\quad<=>\quad添加B->A一条边,边权为1。 ④、X=4:A>B即,A≥B+1<=>添加B−>A一条边,边权为1。
⑤ 、 X = 5 : A ≤ B 即 , B ≥ A < = > 添 加 A − > B 一 条 边 , 边 权 为 0 。 ⑤、X=5:A≤B即,B≥A\quad<=>\quad添加A->B一条边,边权为0。 ⑤、X=5:A≤B即,B≥A<=>添加A−>B一条边,边权为0。
⑥ 、 要 求 每 个 小 朋 友 都 要 分 到 糖 果 , 即 x i ≥ 1 , x i 表 示 第 i 个 小 朋 友 分 得 的 糖 果 数 量 。 ⑥、要求每个小朋友都要分到糖果,即x_i≥1,x_i表示第i个小朋友分得的糖果数量。 ⑥、要求每个小朋友都要分到糖果,即xi≥1,xi表示第i个小朋友分得的糖果数量。
如何选择源点?
要 选 择 能 够 到 达 剩 余 所 有 点 的 点 作 为 源 点 。 要选择能够到达剩余所有点的点作为源点。 要选择能够到达剩余所有点的点作为源点。
选 则 编 号 不 属 于 [ 1 , n ] 的 点 作 为 源 点 均 可 。 选则编号不属于[1,n]的点作为源点均可。 选则编号不属于[1,n]的点作为源点均可。
选 择 0 号 点 作 为 源 点 , 设 置 d i s [ 0 ] = 0 即 x 0 = 0 , 根 据 ⑥ 有 : x i ≥ x 0 + 1 , 1 ≤ i ≤ n 选择0号点作为源点,设置dis[0]=0即x_0=0,根据⑥有:x_i≥x_0+1,1≤i≤n 选择0号点作为源点,设置dis[0]=0即x0=0,根据⑥有:xi≥x0+1,1≤i≤n
故 要 从 0 向 其 他 所 有 点 建 立 一 条 权 值 为 1 的 边 。 故要从0向其他所有点建立一条权值为1的边。 故要从0向其他所有点建立一条权值为1的边。
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=100010, M=300010;
int n,m;
int e[M],ne[M],w[M],h[N],idx;
ll dis[N];
int cnt[N];
bool st[N];
void add(int a,int b,int c)
{
e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}
bool spfa()
{
memset(dis,-0x3f,sizeof dis);
memset(st,false,sizeof st);
int stk[N],tt=0;
dis[0]=0;
stk[tt++]=0;
while(tt)
{
int u=stk[--tt];
st[u]=false;
for(int i=h[u];~i;i=ne[i])
{
int j=e[i];
if(dis[j]<dis[u]+w[i])
{
dis[j]=dis[u]+w[i];
cnt[j]=cnt[u]+1;
if(cnt[j]>=n+1) return true; //n+1个点
if(!st[j])
{
st[j]=true;
stk[tt++]=j;
}
}
}
}
return false;
}
int main()
{
scanf("%d%d",&n,&m);
memset(h,-1,sizeof h);
int x,a,b;
while(m--)
{
scanf("%d%d%d",&x,&a,&b);
if(x==1) add(a,b,0),add(b,a,0); //A=B <=> A>=B && B>=A
else if(x==2) add(a,b,1); //A<B <=> B>=A+1
else if(x==3) add(b,a,0); //A>=B
else if(x==4) add(b,a,1); //A>B <=> A>=B+1
else if(x==5) add(a,b,0); //B>=A
}
for(int i=1;i<=n;i++) add(0,i,1); //xi>=0+1
if(spfa()) puts("-1");
else
{
ll res=0;
for(int i=1;i<=n;i++) res+=dis[i];
printf("%lld\n",res);
}
return 0;
}