组合数学(隔板法) + 高精度 - 方程的解 - AcWing 1308

组合数学(隔板法) + 高精度 - 方程的解 - AcWing 1308

佳 佳 碰 到 了 一 个 难 题 , 请 你 来 帮 忙 解 决 。 佳佳碰到了一个难题,请你来帮忙解决。

对 于 不 定 方 程 a 1 + a 2 + ⋯ + a k − 1 + a k = g ( x ) , 其 中 k ≥ 1 且 k ∈ N ∗ , x 是 正 整 数 , 对于不定方程 a_1+a_2+⋯+a_{k−1}+a_k=g(x),其中 k≥1 且 k∈N∗,x 是正整数, a1+a2++ak1+ak=g(x)k1kNx

g ( x ) = x x   m o d   1000 ( 即 x x 除 以 1000 的 余 数 ) , x , k 是 给 定 的 数 。 g(x)=x^x\ mod \ 1000(即 x^x 除以 1000 的余数),x,k 是给定的数。 g(x)=xx mod 1000xx1000x,k

我 们 要 求 的 是 这 个 不 定 方 程 的 正 整 数 解 组 数 。 我们要求的是这个不定方程的正整数解组数。

举 例 来 说 , 当 k = 3 , x = 2 时 , 方 程 的 解 分 别 为 : 举例来说,当 k=3,x=2 时,方程的解分别为: k=3,x=2

{ a 1 = 1 a 2 = 1 a 3 = 2 { a 1 = 1 a 2 = 2 a 3 = 1 { a 1 = 2 a 2 = 1 a 3 = 1 \begin{cases}a_1=1\\a_2=1\\a_3=2 \end{cases}\qquad\begin{cases}a_1=1\\a_2=2\\a_3=1\end{cases} \qquad\begin{cases}a_1=2\\a_2=1\\a_3=1\end{cases} a1=1a2=1a3=2a1=1a2=2a3=1a1=2a2=1a3=1

输入格式

有 且 只 有 一 行 , 为 用 空 格 隔 开 的 两 个 正 整 数 , 依 次 为 k , x 。 有且只有一行,为用空格隔开的两个正整数,依次为 k,x。 k,x

输出格式

有 且 只 有 一 行 , 为 方 程 的 正 整 数 解 组 数 。 有且只有一行,为方程的正整数解组数。

数据范围

1 ≤ k ≤ 100 , 1 ≤ x < 2 31 , k ≤ g ( x ) 1≤k≤100, 1≤x<2^{31}, k≤g(x) 1k100,1x<231,kg(x)

输入样例:

3 2

输出样例:

3

分析:

隔板法:

我 么 可 以 将 g ( x ) = x x   m o d   1000 看 作 n 个 点 , 我么可以将g(x)=x^x\ mod \ 1000看作n个点, g(x)=xx mod 1000n

接 着 我 们 用 k − 1 个 隔 板 将 n 个 点 分 成 k 个 部 分 ( 每 个 部 分 点 的 数 量 均 大 于 0 ) , 接着我们用k-1个隔板将n个点分成k个部分(每个部分点的数量均大于0), k1nk(0)

这 样 , 每 个 部 分 点 的 数 量 就 对 应 一 个 正 整 数 a i , 每 一 种 分 法 就 对 应 一 组 可 行 解 。 这样,每个部分点的数量就对应一个正整数a_i,每一种分法就对应一组可行解。 ai

故 方 案 总 数 为 C n − 1 k − 1 。 故方案总数为C_{n-1}^{k-1}。 Cn1k1

方 案 总 数 极 限 情 况 下 可 能 会 达 到 C 999 99 左 右 。 方案总数极限情况下可能会达到C_{999}^{99}左右。 C99999

递 推 求 C n m 的 时 间 复 杂 度 为 O ( n m ) 可 行 , 但 需 要 手 写 一 个 高 精 度 。 递推求C_n^m的时间复杂度为O(nm)可行,但需要手写一个高精度。 CnmO(nm)

代码:

#include<iostream>
#include<cstring>
#include<algorithm>

using namespace std;

const int N=150, mod=1000;

int k,x;    
int f[1000][100][N];

int quick_pow(int a,int b,int mod)
{
    int res=1;
    while(b)
    {
        if(b&1) res=res*a%mod;
        a=a*a%mod;
        b>>=1;
    }
    return res;
}

void add(int c[],int a[],int b[])
{
    for(int i=0,t=0;i<N;i++)
    {
        t+=a[i]+b[i];
        c[i]=t%10;
        t/=10;
    }
}

int main()
{
    cin>>k>>x;
    
    int n=quick_pow(x%1000,x,mod);  
    
    for(int i=0;i<n;i++)        //C[n-1][k-1]
        for(int j=0;j<=i && j<k;j++)
            if(!j) f[i][j][0]=1;
            else add(f[i][j],f[i-1][j],f[i-1][j-1]);
            
    int *ans=f[n-1][k-1];
    int i=N-1;
    while(!ans[i]) i--;
    while(i>=0) cout<<ans[i--];
    
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值