- 博客(6)
- 资源 (3)
- 收藏
- 关注
原创 opencv基础使用(六):利用pycharm+opencv进行图像灰度变换
利用直方图的分布可以调节图像的亮度,使之满足图像处理的要求。图像由像素构成,像素具有像素值,通过图像直方图可以知道图像的像素值的分布,即建立灰度值与具有该灰度值的像素个数的关系,从而获得数据分布的统计图。通过直方图可以判读图像质量的好坏。如直方图分布偏左,则说明图像整体偏暗;如果直方图分布偏右,则说明图像整体偏亮,如图所示。此即为左边图像的直方图。上述代码运行结果如图所示:由图中可知,图像的亮度发生改变,如蜜蜂变亮,使得图像的对比度增强。# 创建对象,读取灰度图像。# 获取图像的直方图。
2025-09-06 09:46:50
711
原创 opencv基础使用(五):利用pycharm+opencv进行图像尺度变换
在日常的生活中有时需要对图片进行放大、缩小、平移、旋转等的变化,使得图像呈现不同的状态,这些即为图像的尺度变化。构造旋转矩阵后,利用opencv中通过cv2.warpAffine()函数实现图像的旋转。图像旋转是指图像以一点为旋转中心,旋转一定角度。# 构造变换矩阵,以图像为中心,逆时针旋转30度,缩放比例为1。(2)在映射关系下,确定原图像与输出图像像素值的关系。从矩阵角度来说,可以构造一个齐次矩阵,实现变换,即。(1)确定图像输出图像与输入图像的映射关系;# 应用平移变换,设置为白色填充。
2025-09-05 15:50:27
503
原创 opencv基础使用(四):利用pycharm+opencv进行图像颜色变换
opencv提供的颜色转换函数为cv2.cvtColor(),该函数将图像从一个颜色空间转为另一个颜色空间。该函数的语法为:cv2.cvtColor(输入图像,颜色空间转换代码,目标颜色空间)。在opencv中,图像通常以BGR(蓝色,绿色,红色)来存储,而电脑显示的颜色为RGB(红色,绿色,蓝色),有时候需要其他的颜色空间,如HSV,Lab以及Gray空间。(1)HSV空间:颜色表示中包含色调(Hue)、饱和度(Saturation)和亮度(Value),常用于颜色检测和分割。# 显示转化后的图像。
2025-09-03 17:07:03
382
原创 opencv基础使用(三):利用pycharm+opencv进行图像信息获取
当读取并显示图像后,我们需要获得图像的一些基本信息,如图像的高度,宽度和通道数。对于图像而言,现在已数字图像为主,将真实图像数字化,艺术字的像是表示。然后,使用opencv提供的函数获得图像的宽度、高度和通道数。首先,使用imread()将图像读取出来,即将图像读入内存。print(f"图像通道数:{channel}")print(f"图像通道数:{channel}")print(f"图像高度:{height}")print(f"图像宽度:{width}")print(f"图像宽度:{width}")
2025-09-02 09:46:45
606
原创 opencv基础使用(二):利用pycharm+opencv进行视频读取与显示
从图中可以看出,使用opencv可以流畅的进行视频显示。(该视频读取高速公路车流量,为后续车辆检测和计数做准备。)可以采用任意视频进行显示。视频显示的原理与静态图片显示一样,利用“视觉暂留”现象,将静态图片连续显示,如同动画片的制作。下面通过编程来实现视频显示。上次利用opencv进行静态图片的显示,现在利用opencv进行视频显示。print("无法打开视频")# 如果没有更多帧,退出循环。# 按下 'q' 键退出。# 创建对象,读取视频文件。# 检查是否成功打开视频。# 释放资源并关闭窗口。
2025-08-25 10:23:09
397
原创 opencv基础使用(一):利用pycharm+opencv进行图像读取与显示
opencv作为广泛使用的开源图像处理软件,在计算机视觉和机器视觉中得到广泛使用。pycharm作为python开发的集成工具,带有一整套可以帮助用户在使用Python语言开发时提高其效率的工具,比如调试、语法高亮、智能提示等功能。本篇作为opencv使用基础,以实践为主,通过编写代码,调试程序,让对机器视觉感兴趣的读者熟练掌握图像处理的技巧。程序运行结果如图所示:成功的实现一副静态图像的读取和显示。# 等待图像显示(无此句,图像则会一闪而过)
2025-08-23 10:01:52
512
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅