链接:https://www.nowcoder.com/acm/contest/90/C
来源:牛客网
集训队一共有n位同学,他们都按照编号顺序坐在一个圆桌旁。第i位同学一开始有a[i]个硬币,他们希望使得每位同学手上的硬币变成相同的数目。每一秒钟,有且仅有一位同学可以把自己手上的一枚硬币交给另一位同学,其中这两位同学中间必须间隔k位同学。
现在问的是最少几秒后所有同学手上的有相同数量的硬币
输入描述:
第一行输入两个整数n,k(1<=n<=1000000,0<=k<=n)
接下来的一行有n个整数,第i个整数a[i](0<=a[i]<=1e9)表示第i位同学手上的硬币的数量。
输出描述:
一个整数,表示最少几秒后所有同学手上的有相同数量的硬币。如果不可能,则输出gg。
实例
输入
5 0
2 3 1 5 4
输出
................
所有式子带入之后其实就是求|x1|+|x1−C1|+|x1−C2|+....+|x1−Cn−1||x1|+|x1−C1|+|x1−C2|+....+|x1−Cn−1|的最小值,这个其实就是在一个坐标轴上找一点xx使得xx和0,C1,C2..Cn−10,C1,C2..Cn−1的距离之和最短,这个是求中位数,对这些数排序一下xx取中位数就好了
现在看有nn个人隔kk个人才能给硬币,其实这个可以看做gcd(n,k+1)gcd(n,k+1)个圈,然后他们之间相邻的两个人可以交换硬币,第11个人依次和1+(k+1),1+2(k+1)...1+(k+1),1+2(k+1)...形成一个圈,剩余的人也是这样,这样就是处理gcd(n,k+1)gcd(n,k+1)个圈就是了,最终结果全部相加就是答案,注意一些特殊情况,k=n−1k=n−1或者k=nk=n其实是不能交换的状态,这个特判一下就好了
来源:牛客网
集训队一共有n位同学,他们都按照编号顺序坐在一个圆桌旁。第i位同学一开始有a[i]个硬币,他们希望使得每位同学手上的硬币变成相同的数目。每一秒钟,有且仅有一位同学可以把自己手上的一枚硬币交给另一位同学,其中这两位同学中间必须间隔k位同学。
现在问的是最少几秒后所有同学手上的有相同数量的硬币
输入描述:
第一行输入两个整数n,k(1<=n<=1000000,0<=k<=n)
接下来的一行有n个整数,第i个整数a[i](0<=a[i]<=1e9)表示第i位同学手上的硬币的数量。
输出描述:
一个整数,表示最少几秒后所有同学手上的有相同数量的硬币。如果不可能,则输出gg。
实例
输入
5 0
2 3 1 5 4
输出
3
思路:非常不要脸的粘一下别人的解析,先看怎么处理一个圈有nn个人只给相邻的人硬币的解法,保证总数整除nn是必然的,有个很明显的情况就是如果AA给了BB,那么BB将不会再给AA,这样无疑是多余的步骤,所以相邻的两个人ABAB之间要么是AA给BB,要么是BB给AA,那么相邻的第i−1i−1,ii,i+1i+1三个人,不妨假设第ii个人给了第i−1i−1个人xixi个硬币,从第i+1i+1个人中拿到了xi+1xi+1个硬币,其中xi−1xi−1可以是负数,代表是i−1i−1给ii硬币,假设最终每个人有MM个硬币,初始状态第ii个人有aiai个硬币,那么有以下等式:
对于第一个人,a1−x1+x2=Ma1−x1+x2=M ⇒⇒ x2=M−a1+x1=x1−C1(C1=a1−M,下面类似)
对于第二个人,a2−x2+x3=Ma2−x2+x3=M ⇒⇒ x3=M−a2+x2=2M−a1−a2+x1=x1−C2x3=M−a2+x2=2M−a1−a2+x1=x1−C2................
所有式子带入之后其实就是求|x1|+|x1−C1|+|x1−C2|+....+|x1−Cn−1||x1|+|x1−C1|+|x1−C2|+....+|x1−Cn−1|的最小值,这个其实就是在一个坐标轴上找一点xx使得xx和0,C1,C2..Cn−10,C1,C2..Cn−1的距离之和最短,这个是求中位数,对这些数排序一下xx取中位数就好了
现在看有nn个人隔kk个人才能给硬币,其实这个可以看做gcd(n,k+1)gcd(n,k+1)个圈,然后他们之间相邻的两个人可以交换硬币,第11个人依次和1+(k+1),1+2(k+1)...1+(k+1),1+2(k+1)...形成一个圈,剩余的人也是这样,这样就是处理gcd(n,k+1)gcd(n,k+1)个圈就是了,最终结果全部相加就是答案,注意一些特殊情况,k=n−1k=n−1或者k=nk=n其实是不能交换的状态,这个特判一下就好了
代码:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
#include<cstring>
#include<string>
#include<vector>
#include<cmath>
#include<map>
#define mem(a,b) memset(a,b,sizeof(a))
#define mod 1000000007
using namespace std;
typedef long long ll;
const int maxn = 1e6+5;
const double esp = 1e-7;
const int ff = 0x3f3f3f3f;
map<int,int>::iterator it;
int n,k;
ll jun;
ll a[maxn];
ll cir[maxn];
int vis[maxn];
ll solve(int m)
{
cir[0] = 0;
for(int i = 1;i<= m;i++)
cir[i] = cir[i-1]+cir[i]-jun;
sort(cir,cir+m);//只需要0,C0...Cn-1
ll sum = 0;
ll tmp;
tmp = cir[m/2];//取中位数,偶数个当然也无所谓,选取中间两个中的一个即可
for(int i = 0;i< m;i++)
sum+= abs(cir[i]-tmp);
return sum;
}
void gg()
{
puts("gg");
return ;
}
int main()
{
cin>>n>>k;
k++;
ll sum = 0;
for(int i = 0;i< n;i++)
scanf("%d",&a[i]),sum+= a[i];
if(sum%n!= 0)
{
gg();
return 0;
}
jun = sum/n;
if(k>= n)//特判
{
int j;
for(j = 0;j< n;j++)
if(a[j]!= jun)
{
gg();
break;
}
if(j == n)
cout<<0<<endl;
return 0;
}
int flag = 1;
ll ans = 0;
for(int i = 0;i< n;i++)
{
if(vis[i])
continue;
int cnt = 0 ;
sum = 0;
for(int j = i;vis[j] == 0;j = (j+k)%n)
{
vis[j] = 1;
sum+= a[j];
cir[++cnt] = a[j];
}
if(sum%cnt!= 0||sum/cnt!= jun)
{
flag = 0;
break;
}
ans+= solve(cnt);
}
if(flag)
cout<<ans<<endl;
else
gg();
return 0;
}