好用的RMQ与ST表详解

ST表学习 
作用:ST算法是用来求解给定区间RMQ的最值,本文以最小值为例

举例:

给出一数组A[0~5] = {5,4,6,10,1,12},则区间[2,5]之间的最值为1。

方法:ST算法分成两部分:离线预处理 (nlogn)和 在线查询(O(1))。虽然还可以使用线段树、树状链表等求解区间最值,但是ST算法要比它们更快,而且适用于在线查询。

(1)离线预处理:运用DP思想,用于求解区间最值,并保存到一个二维数组中。

(2)在线查询:对给定区间进行分割,借助该二维数组求最值

具体解释:

(1)离线预处理:

ST算法使用DP思想求解区间最值,貌似属于区间动态规划,不过区间在增加时,每次并不是增加一个长度,而是使用倍增的思想,每次增加2^i个长度。

使用F[i,j]表示以i为起点,区间长度为2^j的区间最值,此时区间为[i,i + 2^j - 1]。

比如,F[0,2]表示区间[0,3]的最小值,即等于4,F[2,2]表示区间[2,5]的最小值,即等于1。

在求解F[i,j]时,ST算法是先对长度为2^j的区间[i,i + 2^j - 1]分成两等份,每份长度均为2^(j - 1)。之后在分别求解这两个区间的最值F[i,j - 1]和F[i + 2^(j - 1),j - 1]。,最后在结合这两个区间的最值,求出整个区间的最值。特殊情况,当j = 0时,区间长度等于1,即区间中只有一个元素,此时F[i,0]应等于每一个元素的值。

举例:要求解F[1,2]的值,即求解区间[1,4] = {4,6,10,1}的最小值,此时需要把这个区间分成两个等长的区间,即为[1,2]和[3,4],之后分别求解这两个区间的最小值。此时这两个区间最小值分别对应着F[1,1] 和 F[3,1]的值。

状态转移方程是 F[i,j] = min(F[i,j - 1],F[i + 2^(j - 1),j - 1])

初始状态为:F[i,0] = A[i]。

在根据状态转移方程递推时,是对每一元素,先求区间长度为1的区间最值,之后再求区间长度为2的区间最值,之后再求区间长度为4的区间最值….,最后,对每一个元素,在求解区间长度为log2^n的区间最值后,算法结束,其中n表示元素个数。

即:先求F[0][1],F[1][1],F[2][1],F[3][1],,,F[n][1],再求.F[0][2],F[1][2],F[2][2],F[3][2],,,F[m][2],… 。

(2)在线处理:这里我们是已知待查询的区间[x,y],求解其最值。

在预处理期间,每一个状态对应的区间长度都为2^i。由于给出的待查询区间长度不一定恰好为2^i,因此我们应对待查询的区间进行处理。

这里我们把待查询的区间分成两个小区间,这两个小区间满足两个条件:(1)这两个小区间要能覆盖整个区间(2)为了利用预处理的结果,要求小区间长度相等且都为2^i。注意两个小区间可能重叠。

如:待查询的区间为[3,11],先尽量等分两个区间,则先设置为[3,7]和[8,11]。之后再扩大这两个区间,让其长度都等于为2^i。刚划分的两个区间长度分别为5和4,之后继续增加区间长度,直到其成为2^i。此时满足两个条件的最小区间长度为8,此时i = 3。

在程序计算求解区间长度时,并没有那么麻烦,我们可以直接得到i,即等于直接对区间长度取以2为底的对数。这里,对于区间[3,11],其分解的区间长度为int(log(11 - 3 + 1)) = 3,这里log是以2为底的。

根据上述思想,可以把待查询区间[x,y]分成两个小区间[x,x + 2^i - 1] 和 [y - 2^i + 1,y] ,其又分别对应着F[x,i]和F[y - 2^i + 1,i],此时为了求解整个区间的最小值,我们只需求这两个值得最小值即可,此时复杂度是O(1)。

转载一下,因为这个博客我看的灰常明白~转载自https://blog.csdn.net/a1351937368/article/details/78400958?locationNum=4&fps=1

代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn = 2e5+5;

int n;
int a[maxn],lg[maxn]; 
int stmax[maxn][25],stmin[maxn][25];

void init()
{
	lg[0] = -1;
	for(int i = 1;i<= n;i++)//预处理log2和赋值
	{
		lg[i] = ((i&(i-1)) == 0)?lg[i-1]+1:lg[i-1];//&操作处的()不可少 
		stmax[i][0] = stmin[i][0] = a[i];
	}
	
	for(int i = 1;i<= lg[n];i++)
	{
		for(int j = 1;j+(1<<i)-1<= n;j++)
		{
			stmax[j][i] = max(stmax[j][i-1],stmax[j+(1<<(i-1))][i-1]);
			stmin[j][i] = min(stmin[j][i-1],stmin[j+(1<<(i-1))][i-1]);
		}
	}
}

int query_max(int l,int r)
{
	int iv = lg[r-l+1];
	return max(stmax[l][iv],stmax[r-(1<<iv)+1][iv]);
}

int query_min(int l,int r)
{
	int iv = lg[r-l+1];
	return min(stmin[l][iv],stmin[r-(1<<iv)+1][iv]);
}

int main()
{
	cin>>n;
	for(int i = 1;i<= n;i++)
		scanf("%d",&a[i]);
	
	init();
	
	int q;
	cin>>q;
	while(q--)
	{
		int l,r;
		scanf("%d %d",&l,&r);
		
		printf("%d %d\n",query_max(l,r),query_min(l,r));
	}
	
	return 0;
}

/*

10
3 5 7 4 4 6 8 8 7 1

*/

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值